首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
化学   73篇
物理学   8篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
We investigate the possibility of tailoring the electronic properties of isoreticular metal-organic materials by replacing the metal atom in the metal-organic cluster and by doping. The electronic structure of M-IRMOF1, where IRMOF1 stands for isoreticular metal-organic framework 1 and M = Be, Mg, Ca, Zn, and Cd, was examined using density-functional theory. The results show that these materials have similar band gaps (ca. 3.5 eV) and a conduction band that is split into two bands, the lower of which has a width that varies with metal substitution. This variation prompted us to investigate whether doping with Al or Li could be used to tailor the electronic properties of the Zn-IRMOF1 and Be-IRMOF1 materials. It is shown that replacing one metal atom with Al can effectively be used to create IRMOFs with different metallic properties. On the other hand, adding Li produces structural changes that render this approach less suitable.  相似文献   
2.
A computational neural network method was used for the prediction of stability constants of simple crown ether complexes. The essence of the method lies in the ability of a computer neural network to recognize the structure-property relationships in these host-guest systems. Testing of the computational method has demonstrated that stability constants of alkali metal cation (Na+, K+, Cs+)-crown ether complexes in methanol at 25 °C can be predicted with an average error of ±0.3 log K units based on the chemical structure of the crown ethers alone. The computer model was then used for the preliminary analysis of trends in the stabilities of the above complexes.  相似文献   
3.
We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a local gating effect of the molecule on the electronic properties of the nanotube host, is studied using density functional theory. The mechanisms of reversible reading and writing of information are illustrated with a F4TCNQ molecule encapsulated inside a metallic carbon nanotube. Our results suggest that this new type of nonvolatile memory element is robust, fatigue-free, and can operate at room temperature.  相似文献   
4.
5.
By using two- and three-body internal coordinates and their derivatives as intermediates, it is possible to enormously simplify formulas for three- and four-body internal coordinates and their derivatives. Using this approach, simple formulas are presented for stretch (two-body), two types of bend (three-body), and wag and two types of torsion (four-body) internal coordinates and their first and second derivatives. The formulas are eminently suitable for economizing molecular dynamics and molecular mechanics calculations and normal coordinate analysis of complicated potential energy surfaces. Efficient methods for computing derivatives of entire potential energy terms, and in particular cross terms with switching functions, are presented.  相似文献   
6.
A purely mathematical heuristic model is examined in order to explain the existence of an avoided crossing between two dispersion curves calculated for a certain potential energy surface designed to simulate the dynamics of a linear polyethylene chain. The model shows that a third mode coupled to a two-mode Fermi-resonant system is able to create a marked instability in a vibrational spectrum. It is noted that such an explanation would require a fourth-order coupling term, which is the reason given for the failure of normal mode analysis to properly identify this dynamical effect.  相似文献   
7.
We describe the development and application of nanosensors having bioreceptor probes for bioanalysis. The nanoprobes were fabricated with optical fibers pulled down to tips having distal end sizes of approximately 30–60nm. The use of two different types of receptors was investigated. Fiberoptic nanoprobes were covalently bound either with bioreceptors, such as antibodies, or with other receptors, such as cyclodextrins that are selective for the size and chemical structure of the analyte molecules. Theoretical calculations were performed to model the binding of beta-cyclodextrin with pyrene and 5,6-benzoquinoline, and to illustrate the possibility of comparing experimental data with theoretical data. The antibody-based nanoprobe was used for in situ measurements of benzopyrene tetrol in single cells. The performance of the nanosensor is illustrated by intracellular measurements performed on a rat liver epithelial cell line (Clone 9) used as the model cell system. The usefulness and potential of these nanotechnology-based biosensors in biological research and applications are discussed.  相似文献   
8.
The self‐assembly properties of N(9)‐(2,3‐dihydroxypropyl adenine) (DHPA), a plausible prebiotic nucleoside analogue of adenosine, were investigated using density functional theory. Two different isomers were considered, and it is found that while both isomers can form a variety of structures, including chains, one of them is also able to form cages and helixes. When these results were put in the context of substrate supported molecular self‐assembly, it is concluded that gas‐phase self‐assembly studies that consider isomer identity and composition not only can aid interpreting the experimental results, but also reveal structures that might be overlooked otherwise. In particular, this study suggest that a double‐helical structure made of DHPA molecules which could have implications in prebiotic chemistry and nanotechnology, is stable even at room temperature. For example electrical properties (energy gap of 4.52eV) and a giant permanent electrical dipole moment (49.22 Debye) were found in our larger double‐helical structure (3.7 nm) formed by 14 DHPA molecules. The former properties could be convenient for construction of organic dielectric‐based devices.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号