首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   8篇
力学   1篇
物理学   5篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有14条查询结果,搜索用时 614 毫秒
1.
Tellurite glasses (TeO2–ZnO–Nb2O5) mono-doped Er3+ and co-doped Er3+/Ce3+ have been prepared using the melt-quenching technique. To evaluate the effect of Ce3+ on the structural, thermal stability of glass hosts and fluorescence properties of Er3+, X-ray diffraction patterns, Ftir spectra, differential scanning calorimeter curves, absorption spectra, fluorescence emission spectra, fluorescence lifetimes, up-conversion emission spectra of glass samples were measured and investigated. Using Judd–Ofelt theory, we calculated intensity parameters (Ω2, Ω4 and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors and the quantum yield of luminescence for 4I13/2 → 4I15/2 transition. The co-doping with Ce3+ was effective on the suppression of up-conversion emission of Er3+ owing to the phonon-assisted energy transfer: Er3+:4I11/2 + Ce3+:2F5/2 → Er3+:4I13/2 + Ce3+:2F7/2 which contributed the effective enhancement of 1.53 µm fluorescence emission. The change in optical properties with the addition of Ce3+ ions have been discussed and compared with other glasses. Using the Mc Cumber method for the 4I13/2 → 4I15/2 transition, absorption cross-section, calculated emission cross-section, and gain cross-section values support that TZNEr1Ce1 glass is a potential material for developing broad-band and high-gain erbium-doped fiber amplifiers applied for 1.53 µm.  相似文献   
2.
The paper reports on monitoring methylmalonic aciduria (MMA)-specific and non-specific metabolites via NMR urinomics. Five patients have been monitored over periods of time; things involved were diet, medication and occasional episodes of failing to comply with prescribed diets. An extended dataset of targeted metabolites is presented, and correlations with the type of MMA are underlined. A survey of previous NMR studies on MMA is also presented.  相似文献   
3.
In this paper, we present the detail calculations of the indirect spectral irradiance E(λ) as a function of the spectral radiant flux Φt(λ) of a radiating source. This relation is used to predict the integrating cylinder irradiance for a given input radiant flux as a function of the geometrical parameters and reflectivity called “multiplier constant”. The radiation transfer within a cylindrical enclosure composed of three different surfaces, the inside circular surface and the two bases in the ends, has been examined. The configuration factor is introduced. Then all the configuration factors needed for our calculation have been given in analytical form.  相似文献   
4.
In this work, structural, thermal and optical properties of Eu3+ doped TeO2–La2O3–TiO2 glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor ΔT=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with Eg=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu–Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the 5D27F0 are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu3+ energy levels.By co-doping tellurite glasses with Eu and Tb, a strong Eu3+ PL enhancement is shown due to excitation transfer from Tb3+ and intrinsic defects to Eu ions.  相似文献   
5.
SnO2 is a n‐type semiconductive oxide with attractive characteristics mainly based on easy elaboration and functionalization routes in addition to chemical robustness. We have fabricated SnO2 nanopillars based DNA sensor to perform the label free (without any redox compound) impedimetric DNA detection. The non faradaic electrochemical impedance spectroscopic (EIS) behavior and more particularly the evolution of the polarization resistance the SnO2 nanopillars has been thoroughly investigated upon the different steps of their functionalization process up to DNA hybridization. Similarly to our previous study on planar 2D SnO2 surfaces, the DNA hybridization induces a systematic increase of the polarization resistance, the magnitude of which decreases with the target DNA concentration. This DNA concentration dependence matches the one obtained from epifluorescence intensity measurements. A common value of DNA detection limit, i.e. 2 nM, is found from both measurement techniques. Interestingly the 3D view intensity obtained by confocal scanning laser fluorescence microscopy confirms that the DNA molecules are mainly grafted along the SnO2 nanopillars. Finally both impedance and fluorescence measurements obtained in the case of 1‐ and 2‐base mismatch hybridizations demonstrate the selectivity of the SnO2 nanopillars based DNA sensor. These preliminary results open the way to further investigations on the influence of both the shape ratio and electrical properties of the SnO2 nanopillars on the impedance variations related to DNA hybridization, notably in view of improving the sensor performances.  相似文献   
6.
The study of radionuclides speciation requires accurate evaluation of stability constants, which can be achieved by CE‐ICPMS. We have previously described a method for 1:1 metal complexes stability constants determination. In this paper, we present its extension to the case of successive complexations and its application to uranyl‐oxalate and lanthanum‐oxalate systems. Several significant steps are discussed: analytical conditions choice, mathematical treatment by non‐linear regression, ligand concentration and ionic strength corrections. The following values were obtained: at infinite dilution, log(β1°(UO2Oxa))=6.93±0.05, log(β2°(UO2(Oxa)22?))=11.92±0.43 and log(β3°(UO2(Oxa)34?))=15.11±0.12; log(β1°(LaOxa+))=5.90±0.07, log(β2°(La(Oxa)2?))=9.18±0.19 and log(β3°(La(Oxa)33?))=9.81±0.33. These values are in good agreement with the literature data, even though we suggest the existence of a new lanthanum‐oxalate complex: La(Oxa)33?. This study confirms the suitability of CE‐ICPMS for complexation studies.  相似文献   
7.
The use of Au/SiO(x) interfaces for the investigation of DNA hybridization using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) simultaneously is demonstrated. Standard glass chemistry was used to link single-stranded DNA (ss-DNA) on aldehyde-terminated Au/SiO(x) interfaces. The layer thickness and amount of grafted oligonucleotides (ODNs) were calculated from SPR on the basis of a multilayer system of glass/Ti/Au/SiO(x)/grafted molecule. Capacitance and resistance values of the modified interface before and after hybridization were calculated from EIS data using an equivalent circuit and allowed the affinity rate constant, K(A) = 4.07 x 10(5) M(-1), to be determined. The EIS results were comparable to those obtained by SPR hybridization kinetics recorded in parallel.  相似文献   
8.
To ensure the better production and sustainable management of natural resources, a chemometric investigation was conducted to examine the effect of cooperative and harvesting periods on the crop yields and chemical compositions of Salvia rosmarinus Spenn essential oils in the Oriental region of Morocco. The samples were collected from three cooperatives over nine time periods from January 2018 to April 2019. The chemical composition of Salvia rosmarinus Spenn essential oils was analyzed by gas chromatography coupled with mass spectrometry. The data from this study were processed by multivariate analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA). The disc diffusion technique and a determination of the minimal inhibitory concentration were performed to study the antibacterial properties of the oils. Statistical analysis showed that the cooperative and harvest period have a significant effect on yields. The highest yield of essential oil was recorded in April 2019 at cooperative C1. The PCA and the HCA results were divided into two groups: Group A for the summer season and group B for the winter season. The samples collected during summer were characterized by a high amount of 1,8-cineole component and a high yield of essential oil, whereas the samples collected during winter were qualified by a high amount of α-pinene component and a low yield of essential oil. The antibacterial activity of Salvia rosmarinus Spenn essential oils showed that Mycobacterium smegmatis ATCC23857 and Bacillus subtilis ATCC 23857 are the most susceptible strains, stopping growth at 1/500 (v/v). The least susceptible strain is Escherichia coli ATCC25922, with an MIC value corresponding to 1/250 (v/v). The findings of this study could have a positive economic impact on the exploitation of rosemary in the Oriental region, especially during the best harvest periods, as they indicate how to obtain the best yields of oils richest in 1,8-cineole and α-pinene chemotypes.  相似文献   
9.
Heat transfer in an enclosure under conditions of forced convection induced by a body (activator) vibrating inside the enclosure is studied numerically. A thermal problem is considered for a vibrational Lewis cell modeling the mass transfer near the interface between two fluids, on which a chemical reaction occurs. The heat transfer is studied as a function of the vibrational-flow velocity and the Prandtl number: the vibrational flows ensure not only intense heat removal from the boundary but also homogeneous mixing of the fluid in the cavity. The dependence of the heat transfer on the vibrational-flow velocity (the Reynolds number based on the average-flow velocity) and on the Prandtl number is constructed.  相似文献   
10.
Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 °C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号