首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A versatile approach for the enantioselective synthesis of functionalised beta-hydroxy N-acetylcysteamine thiol esters has been developed which allows the facile incorporation of isotopic labels. It has been shown that a remarkable reversal of selectivity occurs in the titanium mediated aldol reaction of acyloxazolidinone using either (S)- or (R)-tert-butyldimethylsilyloxybutanal. The aldol products are valuable intermediates in the synthesis of 4-hydroxy-6-substituted delta-lactones.  相似文献   
2.
Anode power deposition is a dominant power loss mechanism for arcjets and magnetoplasmadynamic (MPD) thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arcjets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa and then became insensitive to pressure. Anode power increased with increasing arc current, while the electron number density near the anode surface increased linearly. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied-field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the kinetic energy of the current-carrying electrons acquired over the anode fall region. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, anode current densities, and applied magnetic field strengths, and with magnetic field lines intercepting the anode  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号