首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
化学   23篇
晶体学   1篇
数学   1篇
物理学   22篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   4篇
  1993年   1篇
  1989年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   
2.
Room temperature transmission Mössbauer spectra of Fe62Ni16B14Si8 ribbons, annealed in vacuum for time periods ranging from 5 to 60 minutes at the crystallization temperatureT x=720 K, have been used to investigate the crystallization mechanism by isothermal annealing. Reorientation of the magnetic anisotropy almost normal to the ribbon plane was observed and correlated to the annealing time dependence of the mean hyperfine field (HF) of the amorphous component. Crystallization started at the surface before the bulk and was found to occur in two steps: a metastable equilibrium of the amorphous phase with (FeNi), (FeNi)Si and t-(FeNi)3B, followed by the decomposition of t-(FeNi)3B into t-(FeNi)2B and (FeNi). The increase of the mean magnetic moment at the Fe sites as compared to related iron-based alloys was attributed to compositional small Ni additions.  相似文献   
3.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   
4.
The study reports the preparation of CoFe2O4/SiO2 nanocomposites by a new modified sol–gel method starting from cobalt nitrate, iron nitrate, and diols: 1,2-ethanediol (EG), 1,3-propanediol (1,3PG), and tetraethylorthosilicate (TEOS), for final compositions of 30 %CoFe2O4/70 %SiO2 and 50 %CoFe2O4/50 %SiO2. The method is based on the formation of a Co(II), Fe(III)—carboxylate precursors mixture, during the redox reaction between the NO 3 ? ion and the diol (~140 °C) within the silica gels. The thermal decomposition of these complex combinations takes place at ~300 °C leading to the corresponding amorphous metal oxides within the pores of the hybrid gels. Depending on the subsequent thermal treatment, CoFe2O4 can be obtained as single phase or in a mixture with Co2SiO4. The CoFe2O4 crystallites sizes are in the nanometer range (3–10 nm). The obtained nanocomposites have a hard magnet behavior, as a result of the high anisotropy of CoFe2O4 having large hysteresis cycles.  相似文献   
5.
We propose a two-lattice method for direct determination of the recoilless fraction using a single room-temperature transmission Mössbauer measurement. The method is first demonstrated for the case of iron and metallic glass two-foil system and is next generalized for the case of physical mixtures of two powders. We further apply this method to determine the recoilless fraction of hematite and magnetite particles. Finally, we provide direct measurement of the recoilless fraction in nanohematite and nanomagnetite with an average particle size of 19nm. A list of values obtained for the recoilless fraction in various materials using the two-lattice method is given.  相似文献   
6.
Hematite with different particle sizes was obtained through isothermal annealing and mechanochemical ball-milling methods. The hematite phase is very stable under air atmosphere. The thermal stabilities of hematite under argon atmosphere were characterized by thermal analysis studies up to 800 °C using a simultaneous DSC–TG technique. The lattice parameters a and c of hematite with different particle sizes were extracted from the Rietveld structural refinement of powder X-ray diffraction patterns. Decomposition of hematite into a lower oxidation state in inert argon atmosphere was studied by the TG experiments for the first time and the enthalpy associated with the decomposition reaction was determined from the DSC studies. Particle size has a strong effect on the thermal behavior of hematite samples. Ball-milled hematite samples with smaller particle size showed that the phase transformation was extended to higher temperature range with larger enthalpy. Hematite with larger average particle size showed higher stability under argon atmosphere.  相似文献   
7.
DC Jana  SS Pradhan 《Pramana》2001,56(1):107-115
In subnormal glow discharge under d.c. excitation at different pressure in a varying transverse magnetic field (0 to 30 G) some measurements have been carried out for various initial average tube currents. The voltage across the discharge increases and average tube current and residual current decreases in the magnetic field. With the help of Beckman’s expression [4] for the axial field and the electron density distribution in a transverse magnetic field the observed variation of current and voltage can be satisfactorily explained. The variation of axial electric field with transverse magnetic field can be represented to a fair degree of accuracy by the derived equation. The behaviour of residual current with magnetic field has been observed in these oscillations.  相似文献   
8.
Zirconium-doped hematite particles of the type xZrO2-(1−x)α-Fe2O3 (x=0.1, 0.5) were synthesized using mechanochemical activation and characterized by X-ray diffraction (XRD) and Mössbauer spectroscopy. For x=0.1 all zirconia was dissolved in the hematite lattice after 12 h of ball milling and a particle size of 9 nm was obtained. We obtained the recoilless fraction as function of the ball milling time for each value of the molar concentration x. The appearance of nanoparticles in the system was demonstrated based on these plots. We further correlated the structural properties of the zirconium-doped hematite system with the sensing properties of the best candidate in the series. These were measured as function of temperature, gas concentration (carbon monoxide and methane) and variable humidity of air. The material system was found to be sensitive over the entire range of CO concentrations and the linearity of the sensor signal was not affected by the relative humidity of air, qualities which make it the ideal system for gas sensing.  相似文献   
9.
10.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) has been used to determine the mass of a double-stranded 500 base-pair (bp) polymerase chain reaction (PCR) product with an average theoretical mass of the blunt-ended (i.e. unadenylated) species of 308 859.35 Da. The PCR product was generated from the linearized bacteriophage Lambda genome which is a double-stranded template. Utilization of ethanol precipitation in tandem with a rapid microdialysis step to purify and desalt the PCR product was crucial to obtain a precise mass measurement. The PCR product (0.8 pmol/μL) was electrosprayed from a solution containing 75% acetonitrile, 25 mM piperidine, and 25 mM imidazole and was infused at a rate of 200 nL/min. The average molecular mass and the corresponding precision were determined using the charge-states ranging from 172 to 235 net negative charges. The experimental mass and corresponding precision (reported as the 95% confidence interval of the mean) was 309 406 +/- 27 Da (87 ppm). The mass accuracy was compromised due to the fact that the PCR generates multiple products when using Taq polymerase due to the non-template directed 3'-adenylation. This results in a mixture of three PCR products with nearly identical mass (i.e. blunt-ended, mono-adenylated and di-adenylated) with unknown relative abundances that were not resolved in the spectrum. Thus, the experimental mass will be a weighted average of the three species which, under our experimental conditions, reflects a nearly equal concentration of the mono- and di-adenylated species. This report demonstrates that precise mass measurements of PCR products up to 309 kDa (500 bp) can be routinely obtained by ESI-FTICR requiring low femtomole amounts. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号