首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   1篇
化学   76篇
晶体学   2篇
力学   6篇
数学   8篇
物理学   45篇
  2024年   3篇
  2023年   6篇
  2022年   14篇
  2021年   7篇
  2020年   8篇
  2019年   9篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
1.
2.
Gas Kinetic Method‐based flow solvers have become popular in recent years owing to their robustness in simulating high Mach number compressible flows. We evaluate the performance of the newly developed analytical gas kinetic method (AGKM) by Xuan et al. in performing direct numerical simulation of canonical compressible turbulent flow on graphical processing unit (GPU)s. We find that for a range of turbulent Mach numbers, AGKM results shows excellent agreement with high order accurate results obtained with traditional Navier–Stokes solvers in terms of key turbulence statistics. Further, AGKM is found to be more efficient as compared with the traditional gas kinetic method for GPU implementation. We present a brief overview of the optimizations performed on NVIDIA K20 GPU and show that GPU optimizations boost the speedup up‐to 40x as compared with single core CPU computations. Hence, AGKM can be used as an efficient method for performing fast and accurate direct numerical simulations of compressible turbulent flows on simple GPU‐based workstations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
ABSTRACT

The current study reveals the synthesis of polymer appended Calix[4]amidocrown-5 with specific binding affinity for iodide at ppm-level. The low detection limits are observed via UV-vis and fluorescence spectroscopy. The time-dependent solution and solid-state 127I NMR studies with 18.8 and 19 ppm shifts, indicate a strong sensing nature of resin towards iodide ion. A significant reduction in surface area and pore volume with higher thermostability of resin after iodide uptake indicated iodide inclusion in the amidocrown cavity. The mechanism of iodide sensing may be governed by noncovalent interactions of NH and OH protons present in amidocrown and phenyl ring as observed in terms of emission enhancement in fluorescence spectroscopy. The binding affinity and stoichiometric determinations are determined by Benesi-Hildebrand and Jobs plots, respectively.  相似文献   
4.
5.
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.  相似文献   
6.
A surface plasma wave (SPW) over bismuth-vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼100 mA propagating parallel to the interface in its close proximity.  相似文献   
7.
The quantum group GL p,q(2) is known to be related to the Jordanian GLh,h(2) via a contraction procedure. It can also be realised using the generators of the Hopf algebra G r,s. We contract the G r,s quantum group to obtain its Jordanian analogue G m,k, which provides a realisation of GLh,h(2) in a manner similar to the q-deformed case.  相似文献   
8.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   
9.
ABSTRACT

We study the molecular-scale features of the solid surface that result in the spontaneous motion of a nanodroplet due to the periodic variation of temperature. We first employ a thermodynamic model to predict the variation of solid–fluid interfacial properties that can result in the above motion. The model identifies a composite (surface couple) made of two surfaces that are characterised by a large difference between the entropic parts of the solid–liquid interfacial free energies. In order to understand the molecular-scale features of the two surfaces that may form a surface couple, we performed grand canonical Monte Carlo simulations of Lennard Jones fluid and crystalline surfaces made of Lennard Jones-like atoms. We then used the cumulant expansions of the perturbation formulas to divide the interfacial entropy into two parts: The one that is directly affected by the solid–fluid attraction (direct part), and the other (indirect part) that is indirectly affected by the solid–fluid attraction via the alteration of interfacial fluctuations. Our results indicate that two surfaces form a surface couple if the differences between their chemical natures lead to large differences in the indirect part of the interfacial entropy, while the direct part remains relatively unaffected.  相似文献   
10.
The photochemistry of diphenylphosphoryl azide was studied by femtosecond transient absorption spectroscopy, by chemical analysis of light-induced reaction products, and by RI-CC2/TZVP and TD-B3LYP/TZVP computational methods. Theoretical methods predicted two possible mechanisms for singlet diphenylphosphorylnitrene formation from the photoexcited phosphoryl azide. (i) Energy transfer from the (π,π*) singlet excited state, localized on a phenyl ring, to the azide moiety, thereby leading to the formation of the singlet excited azide, which subsequently loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. (ii) Direct irradiation of the azide moiety to form an excited singlet state of the azide, which in turn loses molecular nitrogen to form the singlet diphenylphosphorylnitrene. Two transient species were observed upon ultrafast photolysis (260 nm) of diphenylphosphoryl azide. The first transient absorption, centered at 430 nm (lifetime (τ) ~ 28 ps), was assigned to a (π,π*) singlet S(1) excited state localized on a phenyl ring, and the second transient observed at 525 nm (τ ~ 480 ps) was assigned to singlet diphenylphosphorylnitrene. Experimental and computational results obtained from the study of diphenyl phosphoramidate, along with the results obtained with diphenylphosphoryl azide, supported the mechanism of energy transfer from the singlet excited phenyl ring to the azide moiety, followed by nitrogen extrusion to form the singlet phosphorylnitrene. Ultrafast time-resolved studies performed on diphenylphosphoryl azide with the singlet nitrene quencher, tris(trimethylsilyl)silane, confirmed the spectroscopic assignment of singlet diphenylphosphorylnitrene to the 525 nm absorption band.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号