首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   27篇
  国内免费   3篇
化学   3篇
物理学   28篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
We demonstrate a simple interconnection layer (ICL) that can be employed in tandem organic solar cells. An ICL with an optimized structure of Ca/Au/MoO3 is used between two sub cells composed of identical regioregularpoly(3-hexylthiophen) (P3HT):[6,6]-phenyl C61-butyric acid methylester (PCBM) photoactive layers. Power conversion efficiency (PCE) of 3.24% and fill factor (FF) of 68.0% are achieved with such an ICL under simulated sunlight (1 O0 m W. cm- 2 ). Compared with the best values of devices with ICLs of Ca/Al/MoOa, PCE is improved by 68.9% and FF is improved by 15.5%. The improved performances are attributed to the optical and electrical balances in both sub cells. The presented ICL extracts free charges efficiently from both sub cells thereby suppressing the exaction recombination in each sub cell.  相似文献   
2.
制备了一种有机垂直光发射晶体管, 兼具有机发光二极管的发光和晶体管的开关调节两个功能.其结构为一个有机发光单元垂直堆叠在一个电容单元上,两单元通过一个共有的源电极连在一起.当电容单元被充电时,积累在源电极的电荷能有效地调节源极与有机层之间的载流子注入势垒,从而达到控制源漏输出电流的大小,最终控制发光单元发光的强度.实验结果表明,器件可提供02 mA的输出电流,其大小可驱动发光单元发光,工作电压(开启电压)为6 V.这种垂直集成方案,实现了器件多功能化,为有机发光二极管有源矩阵驱动的实际应用提供了一种新的解决方法. 关键词: 有机光发射晶体管 垂直 电容  相似文献   
3.
We demonstrate that the electroluminescent performances of organic light-emitting diodes (OLEDs) are significantly improved by evaporating a thin F4-TCNQ film as an anode buffer layer on the ITO anode. The optimum Alq3-based OLEDs with F4-TCNQ buffer layer exhibit a lower turn-on voltage of 2.6 V, a higher brightness of 39820cd/m^2 at 13 V, and a higher current efficiency of 5.96cd/A at 6 V, which are obviously superior to those of the conventional device (turn-on voltage of 4.1 V, brightness of 18230cd/m^2 at 13 V, and maximum current efficiency of 2.74calla at 10 V). Furthermore, the buffered devices with F4-TCNQ as the buffer layer could not only increase the efficiency but also simplify the fabrication process compared with the p-doped devices in which F4-TCNQ is doped into β-NPB as p-HTL (3.11 cd/A at 7 V). The reason why the current efficiency of the p-doped devices is lower than that of the buffered devices is analyzed based on the concept of doping, the measurement of absorption and photoluminescence spectra of the organic materials, and the current density-voltage characteristics of the corresponding hole-only devices.  相似文献   
4.
赵寿根 《物理学报》2009,58(11):7497-7501
利用唐等人提出的考虑事故概率的交通流模型[Tang T Q, Huang H J, Xu G 2008 Physica A 387 6845]研究事故发生地点对冲击波和稀疏波的影响,其数值计算结果表明,该模型可以如实地刻画事故对这两种交通波的影响,但这种影响与事故发生地点密切相关. 关键词: 交通事故 冲击波 稀疏波  相似文献   
5.
We fabricate pentacene-based organic field effect transistors (OFETs) with Cu as source and drain (S-D) electrodes. The fabricated devices stored for ten hours under ambient atmospheric conditions exhibit superior performance compared with the as-prepared devices. The field-effect mobility increases from 0. 012 to 0.03 cm^2 V^-1 s^-1, and the threshold voltage downshifts from -14 to -9 V. The on/off current ratios are close to the order of 10^4. The improved performance of the stored devices is attributed to the formation of thin Cu oxide at the Cu electrodes/organic interfaces. These results suggest a simple and available way to optimize device properties and to reduce fabrication cost for OFETs.  相似文献   
6.
In this study the performance of organic light-emitting diodes(OLEDs) are enhanced significantly,which is based on dual electron transporting layers(Bphen/CuPc).By adjusting the thicknesses of Bphen and CuPc,the maximal luminescence,the maximal current efficiency,and the maximal power efficiency of the device reach 17570 cd/m2 at 11 V,and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm2 respectively,which are enhanced approximately by 33.4%,39.3%,and 68.9%,respectively,compared with those of the device using Bphen only for an electron transporting layer.These results may provide some valuable references for improving the electron injection and the transportation of OLED.  相似文献   
7.
To improve the performance of tandem organic light-emitting diodes (OLEDs), we study the novel NaCl as n-type dopant in Bphen:NaCl layer. By analyzing their relevant energy levels and cartier transporting characteristics, we discuss the mechanisms of the effective charge generation layer (CGL) of Bphen:NaCl (6 wt%)/MoO3. In addition, we use the Bphen:NaC1 (20 wt%) layer as the electron injection layer (ELL) combining the CGL to further improve the performance of tandem device. For this tandem device, the maximal current efficiency of 9.32 cd/A and the maximal power efficiency of 1.93 lm/W are obtained, which are enhanced approximately by 2.1 and 1.1 times compared with those of the single- emissive-unit device respectively. We attribute this improvement to the increase of electron injection ability by introducing of Bphen:NaCl layer. Moreover, the CGL is almost completely transparent in the visible light region, which is also important to achieve an efficient tandem OLEDs.  相似文献   
8.
Naphthalimide derivatives, N-ethyl-4-acetylamino-l ,8-naphthalimide (EAAN) and polymer with N-propyl-4-acetylamino-l,8-naphthalimide (PAAN) side-chain (P-PAAN) were successfully synthesized. Electroluminescent devices of ITO/PVK(120nm)/EAAN(50nm)/Al(150nm) (Ⅰ) and ITO/PVK P-PAAN( 10:1) (50nm)/Al(150nm) (Ⅱ) constructed with EAAN and P-PAAN as the emitting layer were investigated, whereas the single-layer devices of ITO/EAAN or P-PAAN(50nm)/Al(l50nm) (Ⅲ) were not observed to have any e-mission light. The emission results revealed that the exciton recombination formed by positive and negative charge carriers injected from electrodes of devices Ⅰ and Ⅱ was much more balanced than that of devices Ⅲ, which implied that naphthalimide derivatives are a new type of electron-transporting materials with high performance. The electron-transporting properties of naphthalimide derivatives were also elucidated by investigation of the electroluminescent behaviors from both devices of ITO/PPV (80nm)/Al and ITO/P  相似文献   
9.
Organic bulk heterojunction fullerence (C60) doped 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) as the high quality charge generation layer (CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes (OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of (0.40, 0.35) at 100 cd/m2 and (0.36, 0.34) at 1000 cd/m2 have been demonstrated by employing the developed CGL, respectively.  相似文献   
10.
Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes(OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of(0.40, 0.35) at 100 cd/m2 and(0.36, 0.34) at 1000 cd/m2 have been demonstrated by employing the developed CGL, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号