首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   1篇
化学   58篇
晶体学   2篇
数学   3篇
物理学   17篇
  2021年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有80条查询结果,搜索用时 31 毫秒
1.
Three series of pressure‐sensitive adhesives were prepared with constant glass‐transition temperature, using emulsion polymerization. The monomers chosen were butyl acrylate, 2‐ethylhexyl acrylate (EHA), methyl methacrylate (MMA), and acrylic acid (AA). Within each polymer series, the proportion of AA monomer was held constant for each polymer preparation but acrylic ester monomer levels were varied. Adhesion performance was assessed by measurement of loop tack, static shear resistance, and through the construction of peel master‐curves. Peel master‐curves were generated through peel tests conducted over a range of temperatures and peel rates and through application of the time–temperature superposition principle. Bulk effects dominated by polymer zero shear viscosity change as AA and EHA levels were varied were attributed to the observed effect on static shear resistance and the horizontal displacements of peel master‐curves. Static shear resistance was found to strongly correlate with log(aC), a parameter introduced to horizontally shift peel master‐curves to form a superposed, “super master‐curve”. An interfacial interaction was proposed to account for deviations observed when loop tack was correlated with log(aC). Surface rearrangements via hydrogen bonding with the test substrate were suggested as responsible for the interfacial interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1237–1252, 2006  相似文献   
2.
Chemometric techniques have been applied to FTIR and DSC data to correlate polymer composition. Since structural differences in the polymers with only hydrocarbon structure, often cause subtle changes in spectra, the ability of chemometric techniques is required to discern these differences. FTIR spectra and thermal fractionation using DSC were measured for 28 types of polyethylenes (PE) varying in chain branching type, content and distribution. Unsupervised clustering methods such as principal component analysis (PCA) and supervised discriminant analysis were used to classify the PEs according to their structural class. The DSC data was the more successful in both classifying PEs according to their class. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
The effects of adding foreign gases to the central-gas flow or the intermediate-gas flow of an argon inductively coupled plasma are presented. In particular, the influence of up to 16.7% added helium, nitrogen or hydrogen on radially-resolved electron number density, electron temperature, gas-kinetic temperature and calcium ion emission profiles is examined. It is shown that these gases affect not only the fundamental parameters and bulk properties of the plasma, but also how energy is coupled and transported through the discharge and how that energy interacts with the sample. For example, added helium causes an increase in the gas-kinetic temperature, most likely due to the higher thermal conductivity of helium compared to argon but, in general, does not appear to affect significantly either the electron temperature or electron concentration. The shift in the calcium ion emission profile towards lower regions in the discharge with added helium may be attributable to higher droplet desolvation and particle vaporization rates. In contrast, the addition of nitrogen or hydrogen to an Inductively Coupled Argon Plasma (Ar ICP) results in dramatic changes in all three fundamental plasma parameters: electron number density, electron temperature, and gas-kinetic temperature. The net effect of these molecular gases (N2 or H2) on calcium ion emission and on the fundamental plasma parameters is shown to be dependent on the amount of gas added to the plasma and whether the gas is introduced as part of the central- or intermediate-gas flow. In general, nitrogen added to the central-gas flow causes a significant reduction in the number of electrons throughout most of the discharge (over an order of magnitude in certain regions), mainly in the central and upper zones of the ICP. A drop of 3000–5000 K in the central channel electron temperature and a smaller drop in the gas-kinetic temperature are also observed when N2 is added to the central-gas flow. In contrast, the introduction of nitrogen in the intermediate flow causes about a 1 × 1015 electrons cm−3 increase in the electron concentration in the low, toroidal regions of the plasma and an increase in the gas-kinetic temperature of around 1000 K throughout most of the discharge. As seen with the addition of nitrogen to the central-gas flow, the electron temperature is found to increase in the toroidal zones of the plasma when N2 is added to the intermediate flow. These combined effects cause a 20-fold depression in the calcium ion emission intensity only a 1.7-fold depression when N2 is added to the central- or intermediate-gas flows, respectively. On the other hand, hydrogen causes a depression in the electron concentration in the upper areas of the plasma when this gas is added to the central flow but increases the number of electrons in the same region when added to the intermediate flow. Hydrogen also causes a dramatic effect on the electron and gas-kinetic temperatures, significantly increasing both of these parameters throughout the discharge. An increase in the calcium ion emission intensity, accompanied by a downward shift, elongation and broadening of the calcium ion emission profile is also observed with H2 addition.  相似文献   
4.
Differential scanning calorimetry has been used to study the heat flow during melting and crystallisation of a range of polypropylene post-consumer waste (PP PCW) grades and blends. The heat flow curves and the heat capacity curves indicated that the PP PCW grades and blends contained contaminants even after manual sorting and a cleaning process. The enthalpies of the PP PCW grades were lower than that for the virgin grades, as a result of degradation. Small amounts of polymeric contaminants (up to 10%) did not affect the enthalpies of PP PCW although other contaminants may have had some effect. The enthalpies of the PCW blends could in general be predicted by a linear additive rule, which is of importance for recycling a variety of PP PCW products.The authors would like to thank Dr. M. Killen (Basell Australia Pty. Ltd.), Mr. P. Slaven (Citiwide MRF), Dasma Valley Waste Prop. Ltd. and Mr. I. Janetzki (Huhtamaki Australia Ltd.) for supplying materials for this project. Financial support for the project was provided by Basell Australia and Ecorecycle Victoria, Australia.  相似文献   
5.
Annealing experiments have been carried out just below the melting temperature of both polyethylene (LLDPE) and polypropylene (PP) and their blends. The total melting enthalpy measured after the annealing cycle was greater by 10-15% with respect to the value having been measured before it. During the annealing period the heat capacity decreases to a lower value within the first 2-3 min. Heat capacities of PP (either in pure form or in the blends) measured during the heating cycle following the annealing cycle have the same value as during the cooling section. The heat capacities of the LLDPE in the heating cycle following the annealing were those of the preceding heating cycle. The total heat flows in the cooling section following the annealing cycle were greater than those in another cooling cycle at the same temperatures indicating that the crystallisation takes place during the cooling rather than during the annealing periods. The presence of LLDPE decreases the crystallisation temperature of PP. The presence of SEBS in the blend results in a greater crystallisation temperature than that of pure PP. The crystallisation temperature of LLDPE increases with increasing levels of PP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Following the analyses of B. Carter and J. V. Narlikar, the nature of the incomplete, spacelike trajectories about a charged, rotating black hole is described. The study concentrates on those paths which a charged tachyon would follow, incident from off the equatorial plane (on which=/2). The effect of the absorption upon the black hole is calculated and it is concluded that for i /2 only certain charged tachyons will reduce its entropy. However, a sustained bombardment by such particles could cause the singularity to be exposed.  相似文献   
7.
8.
Different grades of linear low density polyethylenes (LLDPEs) have been quenched cooled step-wise and crystallised isothermally at (a series of increasing) temperatures in a DSC (thermal fractionated samples). These samples have been investigated by temperature modulated DSC (MDSC). The heat flow curves of the thermal fractionated materials were compared with those obtained from samples crystallised at a relatively slow cooling rate of 2 K min-1(standard samples). The melting enthalpy obtained from the total heat flow of the thermal fractionated samples was 0-10 J g-1higher than those of standard samples. The melting enthalpy obtained from the reversing heat flows was 13-31 J g-1lower in the thermal fractionated samples than in the standard samples. The ratio of the reversing melting enthalpy to the total melting enthalpy increased with decreasing density of the PE. The melting temperature of the endotherms formed by the step-wise cooling was 9 K higher than the crystallisation temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
Experiments by Gittings, Bandyopadhyay and Durian (Europhys. Lett. 65, 414 (2004)) demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting et al. without any free parameters. It links the photon's path-length fraction f in the liquid phase to the liquid fraction ɛ. We then construct two-dimensional Voronoi foams, replace the cell edges by channels to represent the liquid films and simulate photon paths according to the laws of ray optics using transmission and reflection coefficients from Fresnel's formulas. In an exact honeycomb foam, the photons show superdiffusive behavior. It becomes diffusive as soon as disorder is introduced into the foams. The dependence of the diffusion constant on channel width and refractive index is explained by a one-dimensional random-walk model. It contains a photon channelling state that is crucial for the understanding of the numerical results. At the end, we shortly comment on the observation that photon channelling only occurs in a finite range of ɛ.  相似文献   
10.
A new, fast and convenient method based on coupled thin-layer chromatography (TLC) and Fourier transform-infrared (FT-IR) microscopy is developed to separate, detect and identify the additives in polymers. After the TLC development, the analytes were transferred on to a barium fluoride (BaF2) salt plate via a special capillary technique and analysed by FT-IR microscopy. The additives used for stabilization of polypropylene and the plasticisers used for poly(vinyl chloride) were analysed as examples to illustrate this technique. The overall time taken for the experiment including transferring three marked spots and then identifying them was about 20 min. An amount as small as 0.5 μg can be easily detected and identified. It was a very convenient and reliable method to separate and evaluate complex additives for polymers without the interference from TLC adsorbent, because of a special transferring and identifying method, which is suitable to FT-IR microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号