首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   2篇
数学   1篇
物理学   8篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   
2.
We present studies of novel nanocomposites of BiNi impregnated into the structure of opals as well as inverse opals. Atomic force microscopy and high resolution elemental analyses show a highly ordered structure and uniform distribution of the BiNi filler in the matrix. These BiNi-based nanocomposites are found to exhibit distinct ferromagnetic-like ordering with transition temperature of about 675 K. As far as we know there exists no report in literature on any BiNi compound which is magnetic.  相似文献   
3.
In this work we investigated the optical control of the bidimensional electron gas density in a single asymmetric quantum well using, for the first time, photoreflectance. We performed our measurements at 80 and 300 K as a function of the power density of the pump beam. Under strong illumination, the bidimensional electron gas density is washed out of the quantum well and under a dark condition, it reaches its maximum value. The variation of the optical transitions observed in our photoreflectance spectra was related to the induced changes of the band profile in between these two limiting cases.  相似文献   
4.
The emission of light in the blue-green region from cubic InxGa1-xN alloys grown by molecular beam epitaxy is observed at room temperature and 30 K. By using selective resonant Raman spectroscopy (RRS) we demonstrate that the emission is due to quantum confinement effects taking place in phase-separated In-rich quantum dots formed in the layers. RRS data show that the In content of the dots fluctuates across the volume of the layers. We find that dot size and alloy fluctuation determine the emission wavelengths.  相似文献   
5.
6.
Self-consistent electronic structure calculations of δ-doped quantum wells (QW) in the presence of in-plane magnetic fields B up to 20 Tesla are carried out within the frameworks of the effective mass and the local density approximations. QWs composed of two layers of Ga1-xA1xAs, separated by a layer of GaAs with a donor δ-doped sheet in the center, are considered. The width of the GaAs layer was varied from 100 to 400 Å. It is shown that the diamagnetic shift increases with the increasing of the GaAs QW width. The magnetic field induces remarkable changes in the energy dispersions of electrons and holes, along an in-plane direction perpendicular to B. The most striking effect occurs in the nature of the band gap of these systems. We found that the valence band displays a double-maximum character instead of a single maximum at the center of the Brillouin zone. © 1996 John Wiley & Sons, Inc.  相似文献   
7.
A microscopic theory is presented for high-field miniband transport in a two-dimensional superlattice. The energy transfer to the lateral electron motion is taken into account as well as scattering on polar optical phonons. Oscillatory current anomalies appear when the optical phonon frequency is a multiple of the Bloch frequency. The current oscillations, which are due to Wannier–Stark localization, are much more pronounced in a two-dimensional than in a three-dimensional system with a superlattice structure in one direction.  相似文献   
8.
We report results on the electronic, vibrational, and optical properties of SnO2 obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO2 electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO2 dielectric function arising from optical phonons was also determined resulting the values of ? 1⊥ latt (0) = 14.6 and ? 1∥ latt (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of ?1(0) = 18.2 is predicted for the static permittivity constant of SnO2.  相似文献   
9.
10.

Background  

Although a large body of knowledge about both brain structure and function has been gathered over the last decades, we still have a poor understanding of their exact relationship. Graph theory provides a method to study the relation between network structure and function, and its application to neuroscientific data is an emerging research field. We investigated topological changes in large-scale functional brain networks in patients with Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) by means of graph theoretical analysis of resting-state EEG recordings. EEGs of 20 patients with mild to moderate AD, 15 FTLD patients, and 23 non-demented individuals were recorded in an eyes-closed resting-state. The synchronization likelihood (SL), a measure of functional connectivity, was calculated for each sensor pair in 0.5–4 Hz, 4–8 Hz, 8–10 Hz, 10–13 Hz, 13–30 Hz and 30–45 Hz frequency bands. The resulting connectivity matrices were converted to unweighted graphs, whose structure was characterized with several measures: mean clustering coefficient (local connectivity), characteristic path length (global connectivity) and degree correlation (network 'assortativity'). All results were normalized for network size and compared with random control networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号