首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   7篇
物理学   8篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 9 毫秒
1.
A nonthermal plasma system based on simultaneously formed positive and negative streamers on either side of a dielectric layer is described. The coupled sliding discharge (CSD) reactor based on this concept was found to be scalable by stacking and operating multiple electrode assemblies in parallel, similarly to the shielded sliding discharge (SSD) reactor reported earlier. A comparison of the two systems showed that although the energy density in the CSD reactor was lower, the efficiency for NO conversion and ozone synthesis from dry air were significantly higher. The energy cost for 50 % NO removal was ~30 eV/molecule compared to ~60 eV/molecule in the case of the SSD under the same conditions of 330 ppm initial NO concentration in air. The energy cost decreased to ~12 eV/molecule in both cases when NO was mixed with plasma-activated air at the outlet of the reactor to utilize ozone for NO conversion i.e., indirect plasma treatment. The energy yield for ozone generation from dry air was at ~70 g/kWh, comparable in both systems. The results show that the concept of a CSD, as that of SSDs, allows the construction of compact, efficient plasma reactors.  相似文献   
2.
Shielded sliding discharges are nanosecond streamer discharges which develop along a dielectric between metal foil electrodes, with one of the foils extended over the entire rear of the dielectric layer. The electrode configuration not only allowed rearranging discharges in parallel due to the decoupling effect of the metal layer, but also to modify the electric field distribution in such a way that components normal to the surface are enhanced, leading to an increased energy density in the discharge plasma. By varying the electrode gap, the applied voltage, and the repetition rate, it is shown that by keeping the average electric field constant, the discharge voltage can be reduced from tens of kV to values on the order of a few kV, but only at the expense of a reduced energy density of the plasma. Varying the repetition rate from 20 to 500 Hz resulted in a slightly reduced energy per pulse, likely caused by residual charges on the dielectric surface. Measurements of the NO conversion to NO2 and ozone synthesis in dry air showed that the conversion is only dependent on the energy density of the discharge plasma. Although reducing the pulse voltage from the tens of kV range to that of few kV, and possibly even lower, causes a reduction in energy density, this loss can be compensated for by increasing the electrode gap area. This and the possibility to form discharge arrays allows generating large volume discharge reactors for environmental applications, at modest pulsed voltages.  相似文献   
3.
The effect of pulsed electric fields with amplitudes in the range of 100 V/cm-100 kV/cm on bacteria and aquatic nuisance species has been explored. The pulse duration was so short that heating of the biological matter could be neglected. The electrical energy required for lysing of bacteria, or stunning of aquatic species, decreases when the pulse duration is reduced. For lysing of Eschericia coli, this tendency has been proven to hold for pulsewidths as short as 60 ns. For macroorganisms, however, it was found that for pulsewidths of less than 5 μs, the tendency is reversed: the energy required to affect the macroorganisms increases again. This minimum in energy, or maximum in efficiency, respectively, can be understood by taking the time required for electrical charging of the cell membrane into account. Applications of the pulsed electric field technique (PEFT) are in biofouling prevention, debacterialization of liquids, and in the field of medicine. A series of field tests on biofouling prevention in a cooling system with untreated water as coolant has demonstrated the economic feasibility of the electro-technology  相似文献   
4.
Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.  相似文献   
5.
6.
Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning hydrazoans, a common aquatic nuisance species. Varying pulse amplitude and repetition rate allows us to control the stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal mater environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 μs width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60 000 gallons of water  相似文献   
7.
Positive and negative streamer discharges in atmospheric pressure air were generated in a shielded sliding discharge reactor at operating voltages as low as 5 kV for a gap length of 1.6 cm. In this reactor, electrodes are placed on top of a dielectric layer and one of the electrodes, generally the one on ground potential, is connected to a conductive layer on the opposite side of the dielectric. The energy per pulse, at the same applied voltage, was more than a factor of seven higher than that of pulsed corona discharges, and more than a factor of two higher than that of sliding discharges without a shield. It is explained on the basis of enhanced electric fields, particularly at the plasma emitting electrode. Specific input energy required for 50 % removal from ~1,000 ppm initial NO could be reduced to ~18 eV/molecule when ozone in the exhaust of negative streamers was utilized. For sliding discharges and pulsed corona discharges this value was ~25 eV/molecule and it was 35 eV/molecule for positive shielded sliding discharges. Also, the ozone energy yield from dry air was up to ~130 g/kW h and highest for negative streamer discharges in shielded sliding discharge reactors. The high energy density in negative streamer discharges in the shielded discharge reactor at the relatively low applied voltages might not only allow expansion of basic studies on negative streamers, but also open the path to industrial applications, which have so far been focused on positive streamer discharges.  相似文献   
8.
Reforming liquid fuels into hydrogen and light hydrocarbons is desirable for improving the combustion characteristics of the fuels and the production of reducing agents for applications such as the removal of nitrogen oxides. In this study, diesel, kerosene, gasoline and methane were reformed by spark discharges between needle and plate electrodes at room temperature and atmospheric pressure. The gaseous products from liquid fuels comprised 65–70 % hydrogen and 30–35 % light hydrocarbons having two carbon atoms per molecule (i.e., C2s), or three carbon atoms per molecule (i.e., C3s). The product gases were 90 % hydrogen and 10 % C2s in the case of methane reforming. The energy efficiency for the production of gaseous products was highest in the case of gasoline at 3.8 mol/kWh, followed by kerosene, diesel and methane at 3.2, 3.0, and 2.4 mol/kWh, respectively. These results were found to be comparable to those reported by others for the reforming of pure hydrocarbons by plasmas in liquids. The liquid fuels turned black due to the formation of carbonaceous products, some of which could be filtered out as solid carbon particles, but others remained dissolved and imparted color to the treated liquid.  相似文献   
9.
Parallel operation of DC microhollow cathode discharges in argon at pressures up to several hundred torr was obtained without individual ballast at low currents, where the slope of the current-voltage characteristic is positive. By using semi-insulating silicon as anode material, we were able to extend the range of stable operation over the entire current range, including that with negative differential resistance. This opens the possibility to utilize microhollow cathode discharge arrays in flat panel lamps  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号