首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
数学   2篇
物理学   6篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We investigate the deformation of D-brane world-volumes in curved backgrounds. We calculate the leading corrections to the boundary conformal field theory involving the background fields, and in particular we study the correlation functions of the resulting system. This allows us to obtain the world-volume deformation, identifying the open string metric and the noncommutative deformation parameter. The picture that unfolds is the following: when the gauge invariant combination ω=B+F is constant one obtains the standard Moyal deformation of the brane world-volume. Similarly, when dω= 0 one obtains the noncommutative Kontsevich deformation, physically corresponding to a curved brane in a flat background. When the background is curved, H=dω≠ 0, we find that the relevant algebraic structure is still based on the Kontsevich expansion, which now defines a nonassociative star product with an A homotopy associative algebraic structure. We then recover, within this formalism, some known results of Matrix theory in curved backgrounds. In particular, we show how the effective action obtained in this framework describes, as expected, the dielectric effect of D-branes. The polarized branes are interpreted as a soliton, associated to the condensation of the brane gauge field. Received: 22 March 2001 / Accepted: 13 July 2001  相似文献   
2.
We address the nonperturbative structure of topological strings and c = 1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern–Simons matrix models, together with their holographic duals, the c = 1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonperturbative ambiguity. Our predictions for the multi-instanton expansions are confirmed within the trans-series set-up, which in the double-scaling limit describes nonperturbative corrections to the Toda equation. Finally, we provide a spacetime realization of our nonperturbative corrections in terms of toric D-brane instantons which, in the double-scaling limit, precisely match D-instanton contributions to c = 1 minimal strings.  相似文献   
3.
4.
5.
Journal of High Energy Physics - The coset Sp(2, ℝ)/U(1) is parametrized by two real scalar fields. We generalize the formalism of auxiliary tensor (bispinor) fields in U(1) self-dual...  相似文献   
6.
Resurgent transseries have recently been shown to be a very powerful construction for completely describing nonperturbative phenomena in both matrix models and topological or minimal strings. These solutions encode the full nonperturbative content of a given gauge or string theory, where resurgence relates every (generalized) multi-instanton sector to each other via large-order analysis. The Stokes phase is the adequate gauge theory phase where a ’t Hooft large N expansion exists and where resurgent transseries are most simply constructed. This paper addresses the nonperturbative study of Stokes phases associated to multi-cut solutions of generic matrix models, constructing nonperturbative solutions for their free energies and exploring the asymptotic large-order behavior around distinct multi-instanton sectors. Explicit formulae are presented for the \({\mathbb{Z}_2}\) symmetric two-cut set-up, addressing the cases of the quartic matrix model in its two-cut Stokes phase; the “triple” Penner potential which yields four-point correlation functions in the AGT framework; and the Painlevé II equation describing minimal superstrings.  相似文献   
7.
8.
The gauge theoretic large N expansion yields an asymptotic series which requires a nonperturbative completion to be well defined. Recently, within the context of random matrix models, it was shown how to build resurgent transseries solutions encoding the full nonperturbative information beyond the ’t Hooft genus expansion. On the other hand, via large N duality, random matrix models may be holographically described by B-model closed topological strings in local Calabi–Yau geometries. This raises the question of constructing the corresponding holographically dual resurgent transseries, tantamount to nonperturbative topological string theory. This paper addresses this point by showing how to construct resurgent transseries solutions to the holomorphic anomaly equations. These solutions are built upon (generalized) multi-instanton sectors, where the instanton actions are holomorphic. The asymptotic expansions around the multi-instanton sectors have both holomorphic and anti-holomorphic dependence, may allow for resonance, and their structure is completely fixed by the holomorphic anomaly equations in terms of specific polynomials multiplied by exponential factors and up to the holomorphic ambiguities—which generalizes the known perturbative structure to the full transseries. In particular, the anti-holomorphic dependence has a somewhat universal character. Furthermore, in the non-perturbative sectors, holomorphic ambiguities may be fixed at conifold points. This construction shows the nonperturbative integrability of the holomorphic anomaly equations and sets the ground to start addressing large-order analysis and resurgent nonperturbative completions within closed topological string theory.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号