首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   5篇
化学   115篇
晶体学   4篇
力学   3篇
数学   9篇
物理学   13篇
  2023年   3篇
  2022年   6篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   12篇
  2009年   5篇
  2008年   4篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
1.
Parallel discrete event simulation (PDES) is concerned with the distributed execution of large-scale system models on multiple processors. It is an enabler in the implementation of the virtual enterprise concept, integrating semi-autonomous models of production cells, factories, or units of a supply chain. The key issue in PDES is to maintain causality relationships between system events, while maximizing parallelism in their execution. Events can be executed conservatively only when it is safe to do so, sacrificing the extent to which potential parallelism of the system can be exploited. Alternatively, they can be processed optimistically without guarantee of correctness, but incurring the overhead of a rollback to an earlier saved state when causality error is detected. The paper proposes a modified optimistic scheme for distributed simulation of constituent models of a supply chain in manufacturing, which exploits the inherent operating characteristics of its domain.  相似文献   
2.
Arunachalam MK  Kumaran MK 《Talanta》1974,21(5):355-358
Molybdenum(IV) gives a red colour with ammonium thiocyanate in 5-8M hydrochloric acid medium, the Sandell sensitivity index being 0.018 ppm Mo(VI)/cm(2). Molybdenum(VI) in 4-7M hydrochloric acid medium forms a red complex with ethyl xanthate and ammonium thiocyanate and this can be extracted into acetophenone. Beer's law is obeyed over the range of 1.2-13.8 ppm, and the Sandell indices at 370 and 470 nm are 0.0016 and 0.0068 ppm/cm(2) respectively. The colour is stable for 40 hr. Most cations do not interfere.  相似文献   
3.
In the title compound, C18H16, the [2.2]paracyclophane geometry is restrained to a considerable extent despite the introduction of the extra C=C bridge; typical paracyclophane features, such as the elongated C—C bridges, are still observed. However, the bridgehead atoms of the C=C bridge are forced into unusually close proximity [2.657 (3) Å], which in turn causes the rings to be rotated to an interplanar angle of 13.7 (2)°. The packing involves hexagonally close‐packed layers of molecules parallel to the xy plane, corresponding to the known `7,11' pattern of paracyclophanes, but without significant short intermolecular contacts.  相似文献   
4.
Molybdenum(VI) in 1.4–3.6 M hydrochloric acid medium forms an acetophenone-extractable orange-red complex with the potassium salt of 2-mercapto-benzo-γ-thiopyrone and ammonium thiocyanate in the presence of tin(II) chloride. The limit of identification of the spot test based on this reaction is 0.1 μg of molybdenum (dilution limit, 1:1·106). The spectrophotometric method is fairly selective, the sensitivity being 0.005μg Mo cm-2 at 470 nm. The colour system obeys Beer's law; the optimal concentration range is 0.75–8.5 μg Mo ml-1, the relative photometric error being 1.675%. The complex is stable for over 24 h. Common ions can be tolerated in amounts greater than 1000-fold. Interferences of Co2+, Ni2+, Cu2+ and Ag+ are avoided by complexing these ions with 2-mercaptobenzo-γ-thiopyrone at pH 6–10 and extracting with ethyl acetate or chloroform. The proposed method is applied to the determination of molybdenum in steel and in artificial mixtures.  相似文献   
5.
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.  相似文献   
6.
7.
Journal of Sol-Gel Science and Technology - In the present work, Nickel doped Molybdenum trioxide (NixMoO3) where Ni = X (X = 5, 10, and 15%) nanoparticles (NPs) were...  相似文献   
8.
The surfactant–cobalt(III) complex, cis-[Co(trien)(4AMP)(DA)](ClO4)3, trien = triethylenetetramine, 4AMP = 4-aminopyridine, DA = dodecylamine was synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) value of this surfactant–cobalt(III) complex in aqueous solution was found out from conductance measurements. The conductivity data (at 303, 308, 313, 318 and 323 K) were used for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG m ° , ΔHm and ΔS m ° ). Also the kinetics of reduction of this surfactant–cobalt(III) complex by hexacyanoferrate(II) ion in micelles, β-cyclodextrin, ionic liquids (ILs) and in liposome vesicles (DPPC) media were studied at different temperature. The rate constant for the electron transfer reaction in micelles was found to increase with increase in the initial concentration of the surfactant–cobalt(III) complex. This peculiar behaviour of dependence of second-order rate constant on the initial concentration of one of the reactants has been attributed to the presence of various concentration of micelles under different initial concentration of the surfactant–cobalt(III) complex in the reaction medium. Inclusion of the long aliphatic chain of the surfactant complex ion into β-cyclodextrin leads to decrease in the rate constant. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. It is concluded that below the phase transition temperature, there is an accumulation of surfactant–cobalt(III) complex at the interior of the vesicle membrane through hydrophobic effects, and above the phase transition temperature the surfactant–cobalt(III) complex is released from the interior to the exterior surface of the vesicle. In the presence of ionic liquid medium the second order rate constant for this electron transfer reaction for the same complex was found to increase with increasing concentration of ILs has also been studied. An outer-sphere mechanism is proposed for all these reactions and the results have been explained based on the hydrophobicity of the ligand and the reactants with opposite charges.  相似文献   
9.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   
10.
A method has been developed for the determination of relevant trace impurities (alkali, alkaline and transition metals) in high purity quartz by ion-chromatography. In situ reagent (HF) purification and simultaneous sample dissolution was achieved in a multichannel vapour phase digestion assembly. Twenty-one samples can be digested at a time in this vapour phase system. Significant decrease in the process blank levels for all the analytes was observed. Drastic reduction (250 times) of NH4+ blank was achieved in the described vapour phase digestion, which enables the determination of trace concentration of sodium in high purity quartz. After volatilisation of the matrix and unreacted HF, the clear water leached solutions were injected into an ion-chromatograph equipped with conductivity detector for the determination of alkali and alkaline earth metals. In the case of transition metals, the trace residues were leached with 10 mM HCl and after separation on a mixed bed analytical column (IonPac CS5) were detected by spectrophotometry after post column derivatisation using 4-(2-pyridylazo)resorcinol (PAR). The accuracy of the result was checked by their comparison with those obtained by independent methods like inductively coupled plasma (ICP) MS and ICP atomic emission spectrometry. The achievable detection limits are between 0.4 ng/g (Li) and 22 ng/g (Mn). The application of the method to the determination of the above trace metals in two high-purity-grade quartz samples is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号