首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   9篇
化学   97篇
晶体学   5篇
力学   5篇
数学   28篇
物理学   31篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   9篇
  2013年   12篇
  2012年   8篇
  2011年   17篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  1999年   4篇
  1997年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有166条查询结果,搜索用时 12 毫秒
1.
2.
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5′-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth’s land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor d-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.  相似文献   
3.
The structure and dynamics of water around a protein is expected to be sensitive to the details of the adjacent secondary structure of the protein. In this article, we explore this sensitivity by calculating both the orientational dynamics of the surface water molecules and the equilibrium solvation time correlation function of the polar amino acid residues in each of the three helical segments of the protein HP-36, using atomistic molecular dynamics simulations. The solvation dynamics of polar amino acid residues in helix-2 is found to be faster than that of the other two helices (the average time constant is smaller by a factor of 2), although the interfacial water molecules around helix-2 exhibit much slower orientational dynamics than that around the other two helices. A careful analysis shows that the origin of such a counterintuitive behavior lies in the dependence of the solvation time correlation function on the surface exposure of the probe-the more exposed is the probe, the faster the solvation dynamics. We discuss that these results are useful in explaining recent solvation dynamics experiments.  相似文献   
4.
5.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
6.
Systematic structural perturbation has been used to fine‐tune and understand the luminescence properties of three new 1,8‐naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF / H2O mixtures), the NPIs show aggregation‐induced emission enhancement (AIEE). The NPIs also show moderately high solid‐state emission quantum yields (ca. 10–12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1 – 3 show different extents of intermolecular (π–π and C?H???O) interactions in their solid‐state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.  相似文献   
7.
Three new NPI–BODIPY dyads 1 – 3 (NPI=1,8‐naphthalimide, BODIPY=boron‐dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1 – 3 . Dyads 1–3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 1 – 3 , depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation‐induced emission switching (AIES) on formation of nano‐aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation‐prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3 ) show aggregation‐induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e.g., π–π stacking) play a major role in controlling the emission of these compounds in the aggregated state.  相似文献   
8.
We investigate the information theoretic properties of Kalman–Bucy filters in continuous time, developing notions of information supply, storage and dissipation. Introducing a concept of energy, we develop a physical analogy in which the unobserved signal describes a statistical mechanical system interacting with a heat bath. The abstract universe comprising the signal and the heat bath obeys a non-increase law of entropy; however, with the introduction of partial observations, this law can be violated. The Kalman–Bucy filter behaves like a Maxwellian demon in this analogy, returning signal energy to the heat bath without causing entropy increase. This is made possible by the steady supply of new information. In a second analogy the signal and filter interact, setting up a stationary non-equilibrium state, in which energy flows between the heat bath, the signal and the filter without causing any overall entropy increase. We introduce a rate of interactive entropy flow that isolates the statistical mechanics of this flow from marginal effects. Both analogies provide quantitative examples of Landauers Principle.  相似文献   
9.
Vibrational dephasing of the nitrogen molecule is known to show highly interesting anomalies near its gas-liquid critical point. Here we present theoretical and computational studies of the Raman linewidth of nitrogen along the critical isochore. The linewidth is found to have a lambda-shaped temperature dependence near the critical point. As observed in experimental studies, the calculated line shape becomes Gaussian as the critical temperature (T(c)) is approached. Both the present simulation and a mode coupling theory analysis show that the slow decay of the enhanced density fluctuations near the critical point, probed at the subpicosecond time scales by vibrational frequency modulation, along with an enhanced vibration-rotation coupling, are the main causes of the observed anomalies.  相似文献   
10.
Expressions are derived for the spectrum of the field generated by a planar, homogeneous, secondary source of any spectral distribution and of any state of spatial coherence. It is shown that the state of coherence affects the contributions of the homogeneous as well as the evanescent waves of the emitted field. The near-field spectra are studied in detail. The analysis is illustrated by examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号