首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
化学   27篇
晶体学   3篇
数学   1篇
物理学   22篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
Abstract

Chitosan (CS) is being used for fabrication of low cost, biocompatible materials that have applicability in fields such as agriculture, biotechnology and environment. In Environmental research, one of the applications of CS based hydrogel composites are in form of biosorbents for eviction of toxic dyes, heavy metals and nutrients from effluent streams. The adsorption potential could be attributed to the reactive functional groups existing on the surface of CS. CS based materials can also be employed for oil/water separation, as a fertilizer carrier, in Microbial fuel cells as Electrolyte membrane and as Electrochemical/Biosensors for detecting and analyzing few environmental pollutants such as pesticides. The earlier review papers on the subject matter have concentrated mainly on dye and heavy metal removal without giving details of its utility in the field of electrochemistry and agriculture. Though the biopolymer holds numerous applications, it has not been discussed extensively. Thus, an attempt has been made to elucidate the current and potential applications of CS hydrogels and composites based on the efficacy it has shown in areas of removal of organic and inorganic contaminants such as dyes, heavy metals and nutrients, in agriculture, oil and water separation, Microbial Fuel cells and Electrochemical/Biosensors.
  • HIGHLIGHTS
  • Chitosan based hydrogel composites could be extensively used in the field of Environment Technology.

  • The composites act as effective biosorbents for dye, heavy metal and nutrient removal because of the functional groups present on Chitosan’s surface.

  • These can also be effectively used for oil/water separation and also as a fertilizer/pesticide carrier for their slow release.

  • Chitosan based electrolytes can become a promising ecofriendly substitute for synthetic polymers in fuel cells.

  • These biopolymers have also been researched upon as electrochemical/biosensors in recent years for detecting environmental pollutants.

  相似文献   
2.
Solvent‐free synthesis of spiro‐isoxazolidines (exclusively endo‐diastereoisomers) through [3 + 2] cycloaddition of N‐cyclohexylidene N‐phenyl nitrones with cyclic dipolarophiles under microwave irradiation is described.  相似文献   
3.
4.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   
5.
Copper doped zinc sulfide nanoparticles were prepared by chemical precipitation method. The size of the particles was varied by changing the concentration of capping agent. The XRD studies indicate that most of the samples are cubic in nature. The broadening of peaks tends to increase with increasing capping agent concentration showing decrease in particle size. The crystalline size computed using Scherrer formula is found to be in range of 3–10 nm. Absorption spectra show absorption edge in UV region. The edge was found to shift towards shorter wavelength as the capping agent concentration is increased. This indicates increased effective band gap and hence reduced particle size. The nanoparticle size has been estimated in the range 5–10 nm using effective mass approximation model. For electroluminescence (EL) study of ZnS:Cu nanocrystals, the EL cells were prepared by placing ZnS:Cu nanoparticles between SnO2 coated conducting glass plate and aluminum foil. Alternating voltage of various frequencies was applied and EL brightness (B) at different voltages (V) was measured and reported in this paper.  相似文献   
6.
Fuzzy optimization models are used to derive crisp weights (priority vectors) for the fuzzy analytic hierarchy process (AHP) based multicriteria decision making systems. These optimization models deal with the imprecise judgements of decision makers by formulating the optimization problem as the system of constrained non linear equations. Firstly, a Genetic Algorithm based heuristic solution for this optimization problem is implemented in this paper. It has been found that the crisp weights derived from this solution for fuzzy-AHP system, sometimes lead to less consistent or inconsistent solutions. To deal with this problem, we have proposed a consistency based constraint for the optimization models. A decision maker can set the consistency threshold value and if the solution exists for that threshold value then crisp weights can be derived, otherwise it can be concluded that the fuzzy comparison matrix for AHP is not consistent for the given threshold. Three examples are considered to demonstrate the effectiveness of the proposed method. Results with the proposed constraint based fuzzy optimization model are more consistent than the existing optimization models.  相似文献   
7.
Abstract

LiNaSO4: Eu is a recently discovered thermoluminescence dosimetry (TLD) phosphor which is more sensitive than the widely used CaSO4:Dy. In this paper results are reported on TL glow curves, TL emission spectra and PL photoluminescence. These measurements help to understand the role of impurity and the mechanism of thermoluminescence in this phosphor.  相似文献   
8.
K2Ca2(SO4)3 microcrystalline pure, doped with Eu, Tb and co-doped with Eu, Tb was prepared by solid-state diffusion method. Nanoparticles of these phosphors were also prepared by the chemical co-precipitation method. The formation of the compounds was confirmed by XRD. The particle size was calculated by broadening of the XRD peaks using Scherrer's formula. The particle size of nanocrystalline powder material was approximately found to be around 20 nm. Thermoluminescence and photoluminescence were studied to see the effect of co-doping and particle size. Tb3+ co-doping decreases the intensity in the Eu2+ doped phosphor due to the energy transfer and multiple de-excitations through various radiative and non-radiative processes. The sensitivity of K2Ca2(SO4)3:Eu,Tb microcrystalline phosphor was around 15 times more than LiF-TLD 100 and 7 times more than CaSO4:Dy. A high temperature peak (615 K) was observed in case of the nanoparticles, which was attributed to a particle size induced phase transition. This was confirmed by differential scanning calormetry measurements. The decrease in the sensitivity in case of nanoparticles is attributed to the particle size effect i.e. volume to surface ratio. Theoretical analysis of the glow curves was done by glow curve convolution deconvolution method to calculate trapping parameters of various peaks.  相似文献   
9.
Water plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content. We show how water participates in excess energy dissipation by vibrational cooling of the non-thermally populated Qy band at different rates in different types of clusters but exhibits no polar solvation dynamics. For the micelles, we observe a bifurcation of stimulated emission line shape, whereas a positive-to-negative switching of differential absorption is observed for the rods; both these observations are correlated with their specific structural aspects. Density functional theory calculations reveal two possible stable ground state geometries of dimers, accounting for the bifurcation of line shape in micelles. Thus, our study elucidates water-mediated structure–function relationship within these pigment assemblies.  相似文献   
10.
The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (KD). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl ( 10 f ) and tert-butyl ( 10 g ) compounds displaying optimal activity (MIC 1.562 μg/mL, KD 0.22 μM ( 10 f ) and 4.81 μM ( 10 g )). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5–6, molecular volume >340 Å3, topological polar surface area <40 Å2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号