首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
化学   23篇
力学   29篇
数学   2篇
物理学   13篇
  2024年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2014年   1篇
  2013年   10篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1991年   2篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
The interplay between inertia and elasticity is examined for transient free‐surface flow inside a narrow channel. The lubrication theory is extended for the flow of viscoelastic fluids of the Oldroyd‐B type (consisting of a Newtonian solvent and a polymeric solute). While the general formulation accounts for non‐linearities stemming from inertia effects in the momentum conservation equation, and the upper‐convected terms in the constitutive equation, only the front movement contributes to non‐linear coupling for a flow inside a straight channel. In this case, it is possible to implement a spectral representation in the depthwise direction for the velocity and stress. The evolution of the flow field is obtained locally, but the front movement is captured only in the mean sense. The influence of inertia, elasticity and viscosity ratio is examined for pressure‐induced flow. The front appears to progress monotonically with time. However, the velocity and stress exhibit typically a strong overshoot upon inception, accompanied by a plug‐flow behaviour in the channel core. The flow intensity eventually diminishes with time, tending asymptotically to Poiseuille conditions. For highly elastic liquids the front movement becomes oscillatory, experiencing strong deceleration periodically. A multiple‐scale solution is obtained for fluids with no inertia and small elasticity. Comparison with the exact (numerical) solution indicates a wide range of validity for the analytical result. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
A comparison among three weakly nonlinear approaches for thermo‐gravitational instability in a Newtonian fluid layer heated from below is presented. First, the dynamical systems describing the time evolution of the problem from different weakly nonlinear approaches, namely, the Lorenz model, the amplitude equations and the perturbation expansion approaches are obtained. Next, the steady states and their stability, as well as the transient behaviour are obtained from each dynamical system. The similarity and difference among the three models are emphasized. The role of each of the nondimensional groups, the Rayleigh number and the Prandtl number is compared for the three models. The different approaches lead to similar behaviours when the Rayleigh number is just above its critical value and Prandtl number is high. However, only the dynamical system obtained from the amplitude equations is able to reflect the role of the Prandtl number. On the other hand, the amplitude equations and perturbation expansion techniques are not suitable for predicting the uniform oscillatory behaviour observed frequently in Rayleigh–Bénard convection. The novelty of the current work lies in studying the critical differences in the findings of the three popular approaches to investigate weakly nonlinear thermal convection for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
We consider the Cauchy-Stokes problem. We use a new method based on Nash game theory to recover the missing velocity and normal stress on some inaccessible part of the boundary. This method is used with two different approaches. The first one is compared to a control type one. The numerical study attests that both approaches give accurate results. We compare these results with those of the energy-like minimization method.  相似文献   
4.
5.
Nanoparticles of ferrites (Fe3O4, NiFe2O4, CuFe2O4, and MnFe2O4) were prepared by a reverse (water/oil) microemulsion method. The microemulsion system consisted of cetyltrimethylammonium bromide, 1-butanol, cyclohexane, and a metal salt solution. The procedure was carried out using aqueous ammonia as the coprecipitating agent. Nanosized particles were characterized by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and pyridine adsorption. The NiFe2O4 sample exhibited narrow mesoporous pore size distribution and high surface area ≈233 m2/g. It achieved good adsorption activity towards the dibenzothiophene (DBT) compound (166.3 μmol/g of DBT adsorbent). The structural properties obtained were very interesting for potential applications in the desulfurization process in petroleum refining.  相似文献   
6.
The transient two‐layer thin‐film planar flow is investigated theoretically in this study. The interplay among inertia, viscous and surface/interfacial tension is emphasized. It is found that the film and interface profiles, as well as the flow field, are strongly influenced by the viscosity ratio, velocity and film thickness ratios at inception, and the surface‐to‐interfacial tension ratio. The nonlinear stability of the steady state reveals the formation of a solitary wave after flow inception, which propagates in the form of a convective instability, with the steady state recovered only in the tail (upstream) region of the wave. In the presence of surface/interfacial tension, surface modulation appears, which grows in wavelength and amplitude with position. The flow is found to be particularly stable for higher viscosity of the lower film layer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
8.
The influence of elasticity of a fluid exiting a channel is examined on transient coating downstream. A hybrid spectral/boundary element approach is proposed to solve the problem. The flow inside the channel is assumed to be fully developed. A viscoelastic instability of one‐dimensional plane Couette flow is first determined for a large class of Oldroyd fluids with added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and a polymeric solute. The Johnson–Segalman equation is used as the constitutive model. The velocity profile inside the channel is taken as the exit profile for the emerging free‐surface flow. The flow is assumed to be Newtonian as it emerges from the channel. An estimate of the magnitude of the rate‐of‐strain tensor components in the free‐surface region reveals that they are generally smaller than the shear rate inside the channel. The evolution of the flow front is simulated using the boundary element method. For the channel flow, the problem is reduced to a nonlinear dynamical system using the Galerkin projection method. Stability analysis indicates that the channel velocity may be linear or non‐linear depending on the range of the Weissenberg number. The evolution of the coating flow at the exit is examined for steady as well as transient (monotonic and oscillatory) channel flow. It is found that adverse flow can exist as a result of fluid elasticity, which can hinder the process of blade coating. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
10.
The carbon-13 chemical shift of seventeen N-substituted 2,4,6-triphenyl pyridinium salts (TPP) and N-substituted 2,4,6-triaryl pyridinium (TsPP) salts have been determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号