首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   1篇
物理学   6篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
Braguta  V. V.  Kotov  A. Yu.  Kuznedelev  D. D.  Roenko  A. A. 《JETP Letters》2020,112(1):6-12
JETP Letters - The effect of rotation on the confinement/deconfinement phase transition in SU(3) gluodynamics has been studied in lattice simulation in the rotating reference frame, where rotation...  相似文献   
3.
This paper describes the simple experimental method of size determination of gas clusters in molecular beams formed from supersonic jets. Mean cluster size N is calculated from broadening of the transverse profile of beam intensity at a fixed distance behind the skimmer. The described method allows determining the mean sizes of the clusters of any pure gases. It does not require the building of some special models, or determination of empirical constants. Due to the high intensity of the supersonic beams, the measurements do not require any complex highly sensitive equipment. The effectiveness of the present method is validated by measurements in a cluster beams of test gases (easily condensable CO2, Ar, and weakly condensable N2) and the beam of C2H4 (ethylene), formed from a supersonic jet behind conical nozzles. The certainty of measured characteristics is confirmed by the results of numerical simulations. By using the described method the mean cluster sizes from 50 to 2000 molecules per cluster were determined. The correctness of the obtained cluster sizes of CO2 and Ar is proved by comparison with results of other authors, obtained by other experimental methods, and estimations according to the empirical correlations using condensation scaling parameter Г*.  相似文献   
4.
A method for calculating electronic levels in compact superheavy nuclear quasimolecules based on solving the Dirac equation in spherical coordinates using a multipole expansion of a two-center potential is developed. It is shown that, for internuclear distances up to ∼100 fm, such a technique enables fast convergence, which allows one to calculate the electronic energy levels with an accuracy better than 10−6. Moreover, all the multipole moments can be calculated analytically. The critical distances between the similar colliding nuclei have been calculated in the range Z ∼ 87–100 for bottom electronic levels: even 1σg and odd 1σu, respectively.  相似文献   
5.
The interaction ΔUAMM of the Dirac particle anomalous magnetic moment (AMM) with the Coulomb field of a nucleus and its effect on the low-lying atomic levels are studied for Zα > 1 using both perturbative and essentially nonperturbative approaches. The Zα dependence of particle wavefunctions (WFs) is fully taken into account from the beginning. In deriving the ΔUAMM contribution, the nucleus is viewed either as a uniformly charged extended Coulomb source or as a distributed system formed by pointlike u and d quarks. When estimated nonperturbatively, the ΔUAMM-induced effects in the Dirac equation framework prove to be identical for these two cases. At the same time, the ΔUAMM-induced effect is specific in that its perturbative and nonperturbative estimates are very different for Δg ? const and practically identical as soon as the dynamical screening of AMM at short distances is taken into account in the Dirac equation.  相似文献   
6.
The energy spectrum of a nonrelativistic quantum particle and hydrogen-like atom is considered under the most general conditions of confinement in a spatial box (vacuum cavity). It is shown that the rearrangement of the lowest energy levels occurring in this case turns out to be considerably more significant when compared with the case of confinement achieved by the impenetrable potential barrier. The role in the rearrangement of this level, played by the von Neumann-Wigner level repulsion effect, is emphasized. For an atom confined in a spherical cavity of radius R, it is also shown that, when the role of the cavity boundary is played by the surface layer of nonzero depth d, the atomic ground state possesses a deep and pronounced minimum for the physically reasonable width and depth of that surface layer, in which the binding energy turns out to be an order of magnitude larger than that of the lowest 1s-level of a free atom E 1s . Also, it becomes possible to achieve a mode when the binding energy of an atom is noticeably higher than E 1s at R on the order of 10–100 nm.  相似文献   
7.
The effective interaction ΔUAMM of the anomalous magnetic moment (AMM) of an electron with the Coulomb field of an extended nucleus is analyzed. As soon as the q2 dependence of the electron formfactor F2(q2)is taken into account from the beginning, the AMM is found to be dynamically screened at small distances of r ? 1/m. The ΔUAMM effects on the low-lying electronic levels of a superheavy extended nucleus with Zα > 1are analyzed using the nonperturbative approach. The growth rate of the ΔUAMM contribution with increasing Z is shown to be essentially nonmonotonic. At the same time, the energy shifts of electronic levels in the vicinity of the threshold of the lower continuum monotonically decrease in the region Z ?Zcr,1s. The latter result is generalized to the whole self-energy contribution to energy shifts of electronic levels, thus also referring to the possible behavior of QED radiative effects with virtual-photon exchange, considered beyond the framework of the perturbative expansion in Zα.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号