首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   6篇
物理学   3篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1940年   1篇
  1917年   1篇
  1912年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.  相似文献   
3.
Current density inhomogeneities on electrodes (of physical, chemical, or optical origin) induce long-range electrohydrodynamic fluid motion directed toward the regions of higher current density. Here, we analyze the flow and its implications for the orderly arrangement of colloidal particles as effected by this flow on patterned electrodes. A scaling analysis indicates that the flow velocity is proportional to the product of the applied voltage and the difference in current density between adjacent regions on the electrode. Exact analytical solutions for the streamlines are derived for the case of a spatially periodic perturbation in current density along the electrode. Particularly simple asymptotic expressions are obtained in the limits of thin double layers and either large or small perturbation wavelengths. Calculations of the streamlines are in good agreement with particle velocimetry experiments near a mechanically generated inhomogeneity (a "scratch") that generates a current density larger than that of the unmodified electrode. We demonstrate that proper placement of scratches on an electrode yields desired patterns of colloidal particles.  相似文献   
4.
5.
To elucidate the nature of processes involved in electrically driven particle aggregation in steady fields, flows near a charged spherical colloidal particle next to an electrode were studied. Electrical body forces in diffuse layers near the electrode and the particle surface drive an axisymmetric flow with two components. One is electroosmotic flow (EOF) driven by the action of the applied field on the equilibrium diffuse charge layer near the particle. The other is electrohydrodynamic (EHD) flow arising from the action of the applied field on charge induced in the electrode polarization layer. The EOF component is proportional to the current density and the particle surface (zeta) potential, whereas our scaling analysis shows that the EHD component scales as the product of the current density and applied potential. Under certain conditions, both flows are directed toward the particle, and a superposition of flows from two nearby particles provides a mechanism for aggregation. Analytical calculations of the two flow fields in the limits of infinitesimal double layers and slowly varying current indicate that the EOF and EHD flow are of comparable magnitude near the particle whereas in the far field the EHD flow along the electrode is predominant. Moreover, the dependence of EHD flow on the applied potential provides a possible explanation for the increased variability in aggregation velocities observed at higher field strengths.  相似文献   
6.
We investigate experimentally and theoretically the coalescence dynamics of two spreading droplets on a highly wettable substrate. Upon contact, surface tension drives a rapid motion perpendicular to the line of centers that joins the drops and lowers the total surface area. We find that the width of the growing meniscus bridge between the two droplets exhibits power-law behavior, growing at early times as t1/2. Moreover, the growth rate is highly sensitive to both the radii and heights of the droplets at contact, scaling as ho3/2/Ro. This size dependence differs significantly from the behavior of freely suspended droplets, in which the coalescence growth rate depends only weakly on the droplet size. We demonstrate that the scaling behavior is consistent with a model in which the growth of the meniscus bridge is governed by the viscously hindered flux from the droplets.  相似文献   
7.
Nonuniform evaporation from sessile droplets induces radial convection within the drop, which produces the well-known "coffee-ring" effect. The evaporation also induces a gradient in temperature and consequently a gradient in surface tension, generating a Marangoni flow. Here we investigate theoretically and experimentally the thermal Marangoni flow and establish criteria to gauge its influence. An asymptotic analysis indicates that the direction of the flow depends on the relative thermal conductivities of the substrate and liquid, k_{R} identical withk_{S}/k_{L}, reversing direction at a critical contact angle over the range 1.45相似文献   
8.
9.
Binary colloidal suspensions are assembled into planar superlattices using ac electric fields. Either triangular or square-packed arrays form, depending on the frequency and relative particle concentrations. The frequency dependence is striking since superlattices develop at low and high frequencies but not at intermediate frequencies. We explain the low frequency behavior (<3 kHz) in terms of induced-dipole repulsion balanced by attraction resulting from electrohydrodynamic (EHD) flow. At high frequencies (20-200 kHz), EHD flow is negligible but aggregation occurs since dipole-dipole interactions become attractive.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号