首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   10篇
物理学   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1994年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Oligomers of β‐substituted β‐amino acids (‘β3‐peptides') are known to adopt a helical secondary structure defined by 14‐membered ring hydrogen bonds ('14‐helix'). Here, we describe a deca‐β3‐peptide, 1 , that does not adopt the 14‐helical conformation and that may prefer an alternative secondary structure. β3‐Peptide 1 is composed exclusively of residues with side chains that are not branched adjacent to the β‐C‐atom (β3‐hLeu, β3‐hLys, and β3‐hTyr). In contrast, an analogous β‐peptide, 2 , containing β3‐hVal residues in place of the β3‐hLeu residues of 1 , adopts a 14‐helical conformation in MeOH, according to CD data. These results illustrate the importance of side‐chain branching in determining the conformational preferences of β3‐peptides.  相似文献   
2.
The porosity of 1‐hexanethiol‐functionalised gold nanoparticle films was assessed and utilised as chemiresistor sensors. Electrochemical capacitance measurements showed that the accessibility of electrolytes of different ionic strengths into the pores depended on the thickness of the electric double layer formed. A large variation in capacitance was measured in 0.01–1000 mM NaClO4, implying a wide pore size distribution. The change in morphology of the nanoparticle films upon storage in air, water and ethanol for two weeks was investigated. There was a significant decrease in the electrochemical capacitance at high electrolyte concentrations for the ethanol‐stored films compared to the freshly‐prepared films suggesting a decrease in the number of small pores of radii in the range of 0.3–3 nm. This was further supported by optical topographical measurements where a decrease in the thickness of ethanol‐stored films was observed relative to the freshly‐prepared films. The porous nature of the nanoparticle films was found to have an effect on the chemical sensing behaviour. When used as chemiresistor sensors, for the detection of heptane in water, the ethanol‐stored films provided larger resistance changes and longer response times. This suggests that the more densely packed ethanol‐stored films provided more sites that enabled film swelling, and that diffusion of the analyte occurred through the narrower water‐filled pores. This demonstrates the effect of different storage conditions on film morphology and subsequently sensor response.  相似文献   
3.
[structure: see text] beta-Peptides containing residues derived from trans-2-aminocyclohexanecarboxylic acid (ACHC) display high population of 14-helical secondary structure in aqueous solution. We show that hydrophobic interactions between cyclohexyl rings are not responsible for this conformation-promoting effect, and that polar groups may be attached to the cyclohexyl ring without diminishing the effect.  相似文献   
4.
We report a significant and unanticipated advance in the study of beta-amino acid-based foldamers: a small proportion of highly preorganized residues can impart high stability to a specific helical secondary structure in water. Most of the residues in these beta-peptides (2 and 3) are intrinsically flexible. Flexible beta-amino acids can be readily and enantiospecifically prepared in functionally diverse forms, but preorganized residues with side chains are rare and challenging to synthesize. Our findings demonstrate that interspersing a few copies of an unfunctionalized but rigid residue among a larger number of flexible residues with diverse side chains is a viable strategy for creating beta-peptides that adopt the 14-helix conformation and therefore display side chains in a predictable spatial arrangement. These results are significant because they enhance the prospects of developing beta-peptides with useful activities.  相似文献   
5.
The interaction between cucurbit[8]uril (Q[8]) and a series of symmetric viologen derivatives having aliphatic substituents of variable length [N,N′-dialkyl-4,4′-bipyridinium dianions; alkyl = CH3(CH2) n –, n = 0 (MV2+), 1 (EV2+), 2 (PV2+), 3 (BV2+), 4 (FV2+), 5 (HV2+) or 6 (SV2+); BPY2+ = diprotonated 4,4-bipyridine], determined by 1H NMR and electronic absorption spectroscopy methods, is described. Some different binding models were observed in this work when compared to the interactions between cucurbit[7]uril (Q[7]) and these guests. The experimental results revealed that the binding site of the guests by Q[8] depended strongly on the length of the aliphatic substituents on the 4,4′-bipyridinium nucleus. While a 1:2 complex was observed for Q[8]-BPY2+ under acidic conditions, a 1:1 complex was formed for Q[8]-viologen derivatives with chains shorter than four carbon atoms. However, multiple Q[8] molecules could be threaded on the longer-chain FV2+, HV2+ or SV2+ molecules to form 2:1 and even possibly 3:1 complexes.  相似文献   
6.
High spin states in81Y up to the probable 33/2+ and 29/2? yrast states have been measured via the reaction58Ni(28Si,αp, using the Cologne tandem accelerator. Directional correlations of oriented nuclei were determined and the level scheme was extended with lifetimes measured by means of DSA and recoil distance techniques. Reduced transition strengths inferred from lifetimes were consistent with the results of Hartree-Fock-Bogolyubov calculations, which predict a nearly axially symmetric deformation ofβ 2≈0.37 for theπ=+ band. Predictions reveal an alignment driving the system to a smaller and triaxial deformation withβ 2=0.23 andγ=?30°, although the data show this crossing to be somewhat delayed. Particle-rotor calculations for the one-quasiparticle bands corroborate the predictions of deformation parameters based on the cranking model.  相似文献   
7.
The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a “coffee ring”-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both “coffee ring” and “flat” films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the “coffee ring” film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution.  相似文献   
8.
Raguse  B.  Herrmann  J.  Stevens  G.  Myers  J.  Baxter  G.  Müller  K.-H.  Reda  T.  Molodyk  A.  Braach-Maksvytis  V. 《Journal of nanoparticle research》2002,4(1-2):137-143
A new hybrid material consisting of a nanoparticle film on a flexible, porous substrate is formed. The hybrid nanoparticle films are non-redispersable in solvents, yet remain porous and flexible. Visually, the hybrid films are highly reflective and metallic gold in appearance. However, the electronic properties of the films are characteristic for materials made from separate, non-sintered nanoparticles. Films of large area (several tens of cm2) and several microns in thickness can be formed. The method of formation is based on cross-linking gold nanoparticles using alkane-dithiols followed by filtration onto nanoporous supports. The films were characterized by transmission electron microscopy, atomic force microscopy and resistance measurements. The effect of the ratio of alkane-dithiol cross-linker to gold nanoparticles on the resistance of the nanoparticle films was also studied.  相似文献   
9.
Antimicrobial alpha-helical alpha-peptides are part of the host-defense mechanism of multicellular organisms and could find therapeutic use against bacteria that are resistant to conventional antibiotics. Recent work from Hamuro et al. has shown that oligomers of beta-amino acids ("beta-peptides") that can adopt an amphiphilic helix defined by 14-membered ring hydrogen bonds ("14-helix") are active against Escherichia coli [Hamuro, Y.; Schneider, J. P.; DeGrado, W. F. J. Am. Chem. Soc. 1999, 121, 12200-12201]. We have created two series of cationic 9- and 10-residue amphiphilic beta-peptides to probe the effect of 14-helix stability on antimicrobial and hemolytic activity. 14-Helix stability within these series is modulated by varying the proportions of rigid trans-2-aminocyclohexanecarboxylic acid (ACHC) residues and flexible acyclic residues. We have previously shown that a high proportion of ACHC residues in short beta-peptides encourages 14-helical structure in aqueous solution [Appella, D. H.; Barchi, J. J.; Durell, S. R.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 2309-2310]. Circular dichroism of the beta-peptides described here reveals a broad range of 14-helix population in aqueous buffer, but this variation in helical propensity does not lead to significant changes in antibiotic activity against a set of four bacteria. Several of the 9-mers display antibiotic activity comparable to that of a synthetic magainin derivative. Among these 9-mers, hemolytic activity increases slightly with increasing 14-helical propensity, but all of the 9-mers are less hemolytic than the magainin derivative. Previous studies with conventional peptides (alpha-amino acid residues) have provided conflicting evidence on the relationship between helical propensity and antimicrobial activity. This uncertainty has arisen because alpha-helix stability can be varied to only a limited extent among linear alpha-peptides without modifying parameters important for antimicrobial activity (e.g., net charge or hydrophobicity); a much greater range of helical stability is accessible with beta-peptides. For example, it is very rare for a linear alpha-peptide to display significant alpha-helix formation in aqueous solution and manifest antibacterial activity, while the linear beta-peptides described here range from fully unfolded to very highly folded in aqueous solution. This study shows that beta-peptides can be unique tools for analyzing relationships between conformational stability and biological activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号