首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   0篇
化学   19篇
数学   1篇
物理学   60篇
  2019年   1篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   4篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1996年   1篇
  1994年   3篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1966年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Magnetic microtraps and Atom Chips are safe, small-scale, reliable and flexible tools to prepare ultra-cold and degenerate atom clouds as sources for various atom-optical experiments. We present an overview of the possibilities of the devices and indicate how a microtrap can be used to prepare and launch a Bose-Einstein condensate for use in an atom clock or an interferometer.  相似文献   
2.
3.
4.
5.
6.
7.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   
8.
9.
Catalytic activity of Os(VIII) in the oxidation of some twenty organic sulfides with sodium salt of N-chlorobenzenesulfonamide (CAB) has been investigated in alkaline (pH8.7) t-butanol–water (1:1 v/v) medium. Significant retarding influence of [OH] on the reactivity is exhibited. The catalysed reaction is strongly accelerated in the presence of Hg(II). Imperfections are observed in the linear Hammett relationship in the case of –NO2 substituents.  相似文献   
10.
Nano titanium dioxide (nTiO2), generally considered to be toxicologically inert, is manufactured in large quantities and extensively applied in consumer products. The small size and large surface area endow them with an active group or intrinsic toxicity. Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of (bio) chemical applications. One of the great advantages of this technique is its ability to provide information on the concentration, structure and interaction of biochemical molecules in their microenvironments within intact cells and tissues, non-destructively. Zebrafish (Danio rerio), one of the most important vertebrate model organisms used in developmental biology, are increasingly used in biomedical research, particularly as a model of human disease. In the present work, an attempt is made to study the effect of titanium dioxide, both nano and bulk, on the microenvironment of the liver tissues of Zebrafish using FT-Raman spectroscopy. The results of the present study suggest that TiO2 exposure demonstrate a marked influence on the microenvironments of the liver tissues of Zebrafish. A shift to a higher wavenumber and an increase in the intensity of the band at ∼1087 cm−1 in the TiO2 exposed tissues suggest that some of the conformational changes resulting from the alkali recovery process takes place due to TiO2 exposure. The decreased intensity ratio (I3220/I3400) observed in the titanium-exposed tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the TiO2 exposed tissues. The observed shift of COO bands to higher frequencies shows the disruption of salt bridges as a result of a change in the oppositely charged partners and due to the enhanced random coil conformation. The variation in the intensity ratio of the tyrosyl doublet (I858/I825) indicates variation in the hydrogen bonding of the phenolic hydroxyl group due to TiO2 exposure. The results further suggest that the microenvironments are greatly altered due to titanium nano exposure when compared to titanium bulk. In conclusion, the results indicate that FT-Raman spectroscopy might be a useful tool for rapid assessment of nano particle biological interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号