首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
物理学   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
The addition reactions of alkyl radicals CF3* and CH3* and carboxyl radicals C2H5O*, C2H5OCOO*, CF3COO*, and CH3COO* to a vinylidene fluoride (VDF) molecule are studied using ab initio calculations. These radicals were selected because they are intermediate or final products of diacyl peroxides decomposition in the initiation reactions of VDF polymerization. Two combinations of methods for energetics and structure optimization are applied: QCISD/6-311G(d,p)//HF/6-31G(d) and B3LYP/6-311G+(3df, 2p)//B3LYP/6-31G(d). It is found that the formed bond length of the product, the forming bond length of the transition state, and the attack angle of the product structures are not sensitive to the level of theory even though the attack angle of the transition state structures is. Early transition states are obtained upon attack at both high-substituted and nonsubstituted carbon atom VDF ends. Kinetic and thermodynamic control rules play different roles on governing the reactivity of the addition with the studied radicals. Both theoretical methods yield the same trends for the preferential attack site in terms of regioselectivity, barrier energies, and reaction enthalpies. It is shown that the addition reactions of the intermediate radicals C2H5OCOO*, CF3COO*, and CH3COO* of the decomposition of diethyl peroxydicarbonate, trifluoroacetyl peroxide, and diacetyl peroxide initiators yield smaller energy barriers than the additions of the corresponding final radicals, C2H5O*, CF3*, and CH3*; therefore, the reactions of the intermediate radicals should not be ignored when analyzing the initiation process of the VDF polymerization using those initiators.  相似文献   
2.
Density functional theory and classical molecular dynamics simulations are used to investigate the vibrational spectra of caffeine and theophylline anhydrous and monohydrate molecules and those of their crystalline anhydrous and monohydrated states, with emphasis in the terahertz region of the spectra. To better understand the influence of water in the monohydrate crystal spectra, we analyze the vibrational spectra of water monomer, dimer, tetramer, and pentamer, and also those of liquid water at two different temperatures. In small water clusters, we observe the progressive addition of translational and librational modes to the terahertz region of the spectra. The water spectra predicted by rigid and flexible water models is examined with classical molecular dynamics, and the respective peaks, especially in the terahertz region, are compared with those found in the small clusters. Similar analysis done for caffeine and theophylline monohydrate molecules using density functional theory clearly shows the presence of water modes in the librational states and in the water stretching region. Molecular dynamics of caffeine and theophylline anhydrous and monohydrate crystals reveal the influence of vibrations from the molecule-molecule (caffeine or theophylline) crystal stacks and those from the water-molecule interactions found in the monohydrate molecules and new modes from molecule-molecule, water-molecule, and water-water hydrogen bonding interactions arising from collective effects in the crystal structure. Findings illustrate challenges of terahertz technology for the detection of specific substances in condensed phases.  相似文献   
3.
Density functional theory is used to study the effect of atomic oxygen adsorption at various coverages with and without the presence of water on ordered and Pt-segregated PtCo surfaces. The strength of O adsorption, as well as surface reconstruction effects due to the adsorbate are strongly influenced by the presence of the oxygen-philic transition metal on the surface or subsurface. At high O coverage, buckling of the Co atom on PtCo surfaces is much smaller than that of Pt on Pt(1 1 1) surfaces, and buckling of Pt atoms on Pt-skin surfaces is negligible. Also, the effect of an electric field perpendicular to the surface on adsorbed water and atomic oxygen is investigated. Spontaneous water dissociation is not found on the ordered and segregated alloy surfaces within the entire applied electric field range (−0.51 to 0.51 V/Å). Water changes orientation under strong negative fields, switching from a metal–O to a metal–H interaction, and the effect is much more pronounced in the low-coordination sites of cluster models.  相似文献   
4.
Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M(2)C (M = Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.  相似文献   
5.
Density functional theory is used to study surface atomic distributions on slabs of PtCo and Pt3Co overall compositions, as well as water molecule adsorption on PtCo(1 1 1) and Pt-skin structures. Pt-rich surfaces are energetically favored under vacuum in the PtCo and Pt3Co alloys. The adsorption trend on the studied structures agrees with the d-band model, with stronger adsorption at higher surface Co composition. The most stable adsorption site for a water molecule on PtCo surfaces is on top of Co atoms, with the dipole vector parallel to the surface. This water/surface interaction is as strong as that of water molecule on Pt(1 1 1), whereas bonding to Pt-skin monolayers is found much weaker than that on Pt(1 1 1). It is found that water interacts mainly through its 1b1 and 3a1 orbitals with d orbitals of the Pt(1 1 1), PtCo(1 1 1) and Pt-skin surface atoms. Compared to the sum of the electron densities of the separated systems, the electron density of the water/surface gets depleted along O-Pt on Pt-skin surfaces while it becomes richer in the O-Co bonding region of PtCo.  相似文献   
6.
Analyses of the structure of two to four water molecule clusters confined between two benzene and between two naphthalene molecules have been performed using ab initio methods. The water clusters tend to maximize the number of hydrogen bonds via formation of a cyclic network. The oxygen atoms locate approximately in the middle of the confined geometry, and the dipole vectors arrange either parallel or pointing to the surfaces. Energy barriers for proton transfer calculated for H3O+-(H2O) complexes in the same confined geometries suggest that there is a specific range of confinement that helps to lower the energy barriers of the proton transfer. When the walls are too close to each other, at a separation of 4 A, the energy barriers are extremely high. Confinement does not lower the barrier energies of proton transfer when the H3O+-(H2O) complexes are located further from each of the surfaces by more than approximately 8 A.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号