首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   11篇
物理学   2篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2012年   2篇
  2011年   5篇
排序方式: 共有13条查询结果,搜索用时 828 毫秒
1.
Sodium cobalt metaphosphate [NaCo(PO3)3] has CoO octahedra (CoO6) and shows superior oxygen evolution reaction (OER) activity in alkaline solution, comparable with the state‐of‐the‐art precious‐metal RuO2 catalyst. OER catalysts of this metaphosphate are prepared by combustion (Cb) and solid‐state (SS) methods. The combustion‐assisted method offers a facile synthesis and one‐step carbon composite formation. Unusually high catalytic activity was observed in NCoM‐Cb‐Ar and could be due to chemical coupling effects between NaCo(PO3)3 and partially graphitized carbon. This novel electrocatalyst exhibits very small overpotential of 340 mV with high mass activity of 532 A g?1. Good charge transfer abilities and chemical coupling between NaCo(PO3)3 and amorphous carbon gives the OER activity in NCoM‐Cb‐Ar.  相似文献   
2.
3.
A porous, hollow, microspherical composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) was prepared using hollow MnO2 as the sacrificial template. The resulting composite was found to be mesoporous; its pores were about 20 nm in diameter. It also delivered a reversible discharge capacity value of 220 mAh g?1 at a specific current of 25 mA g?1 with excellent cycling stability and a high rate capability. A discharge capacity of 100 mAh g?1 was obtained for this composite at a specific current of 1000 mA g?1. The high rate capability of this hollow microspherical composite can be attributed to its porous nature.
Graphical Abstract ?
  相似文献   
4.
5.
6.
7.
8.
9.
Exploring soft-chemistry synthesis of Fe-based battery cathode materials, we have optimized combustion synthesis as an ultra-rapid approach to produce Na2FePO4F fluorophosphate cathode. It yields nanoscale, carbon-coated target product by annealing (at 600 °C) for just 1 min. The purity of the material crystallizing in the orthorhombic structure was confirmed by powder X-ray diffraction pattern and XPS analysis, while the morphology was studied by scanning electron microscopy. The as-synthesized material exhibits good electrochemical performance delivering a first discharge capacity of more than 70 mAh/g at C/10 rate versus both Li+/Li and Na+/Na, hence acting as an efficient host for both Li-ion and Na-ion insertion. Combustion synthesis can be employed as an economic route for synthesis and rapid screening of various phosphate-based insertion materials.  相似文献   
10.
Journal of Solid State Electrochemistry - In pursuit of high-energy density sodium insertion materials, polyanionic frameworks can be designed with tuneable high-voltage operation stemming from...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号