首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
晶体学   1篇
物理学   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The anion-conducting polymer electrolyte polyethylene oxide (PEO)/ethylene carbonate (EC)/Pr4N+I/I2 is a candidate material for fabricating photo-electrochemical (PEC) solar cells. Relatively high ionic conductivity values are obtained for the plasticized electrolytes; at room temperature, the conductivity increases from 7.6 × 10−9 to 9.5 × 10−5 S cm−1 when the amount of EC plasticizer increases from 0% to 50% by weight. An abrupt conductivity enhancement occurs at the melting of the polymer; above the melting temperature, the conductivity can reach values of the order of 10−3 S cm−1. The melting temperature decreases from 66.1 to 45.1 °C when the EC mass fraction is increased from 0% to 50%, and there is a corresponding reduction in the glass transition temperature from −57.6 to −70.9 °C with the incorporation of the plasticizer. The static dielectric constant values, , increase with the mass fraction of plasticizer, from 3.3 for the unplasticized sample to 17.5 for the 50% EC sample. The dielectric results show only small traces of ion-pair relaxations, indicating that the amount of ion association is low. Thus, the iodide ion is well dissociated, and despite its large size and relatively low concentration in these samples, the iodide ion to ether oxygen ratio is 1:68, a relatively efficient charge carrier. A further enhancement of the ionic conductivity, especially at lower temperatures, is however desired for these applications.  相似文献   
2.
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles.  相似文献   
3.
This research paper describes the synthesis of nano‐ and micro‐structures of high purity precipitated calcium carbonate (PCC) on poly(ethylene glycol)(PEG) templates for broad‐range industrial applications, using readily available and cheap impure dolomitic marbles. In the method, calcium components of impure dolomitic marbles are extracted as calcium sucrate which is then bubbled with carbon dioxide gas using a carbonation column in the presence of PEG. The effects of concentration of PEG, pH of calcium sucrate solution and temperature on the final yield, morphology and polymorphism of PCC have been studied. Vaterite and calcite are the crystalline forms of calcium carbonate found in final PCC products. The vaterite is observed as hollow spheres with particle diameter of 1.5‐2 μm which is formed by aggregation of vaterite nanoparticles with particle size of 20 nm on PEG templates. Optimum conditions for the highest PCC yield of 79.94% are 0.4 mol dm−3 of PEG, pH of 6.5 and temperature of 80 °C. The purity of PCC products is about 99%. Therefore, the synthesized PCC products are of required purity and quality for industrial applications.  相似文献   
4.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   
5.

Solid polymer electrolytes (SPEs) based on polyethylene oxide (PEO) complexed with magnesium triflate Mg(Tf)2 or Mg(CF3SO3)2) and incorporating the ionic liquid (IL) (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI)) were prepared by solution cast technique. The electrolyte was optimized and characterized using electrical conductivity, cationic transport number measurements, and cyclic voltammetry. The highest conductivity of the PEO/Mg(Tf)2, 15:1 (molar ratio), electrolyte at room temperature was 1.19 × 10−4 S cm−1 and this was increased to 3.66 × 10−4 S cm−1 with the addition of 10 wt.% ionic liquid. A significant increase in the Mg2+ ion transport number was observed with increasing content of the ionic liquid in the PEO-Mg(Tf)2 electrolyte. The maximum Mg2+ ion transport number obtained was 0.40 at the optimized electrolyte composition. A battery of the configuration Mg/ and [(PEO)15:Mg(Tf)2+10%IL]/TiO2-C was assembled and characterized. Preliminary studies showed that the discharge capacity of the battery was 45 mA h g−1.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号