首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学   25篇
力学   1篇
物理学   7篇
  2014年   2篇
  2012年   6篇
  2011年   3篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
This numerical simulation paper focuses on the adsorption/desorption of water in disordered mesoporous silica glasses (Vycor-like). The numerical adsorbent was previously obtained by off lattice method, and was shown to reproduce quite well the micro- and mesotextural properties of real Vycor, as well as morphological (pore size distribution) and topological (pore interconnections) disorder. The water-water interactions are described by the SPC model while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption/desorption isotherms and the configurational energies are calculated by the Grand Canonical Monte Carlo simulation method. The low pressure results compare well with experiments, showing the good transferability of the intermolecular potential. It is shown that if the hysteresis loop observed in the adsorption/desorption isotherm is considered as a true phase transition (which is actually still an open question in the case of disordered porous materials), then it is possible to calculate the grand potential by applying the thermodynamic integration scheme. The grand potential is shown to be multivalued for low (subcritical) temperature, and continuous for high (supercritical) temperature. A coexistence point is found within the hysteresis loop, actually close to the vertical desorption line. Below the equilibrium chemical potential, the gaslike branch is stable whereas the liquidlike branch is metastable. The situation is reversed above the coexistence point.  相似文献   
2.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   
3.
The use of empirical force fields is now a standard approach in predicting the properties of hydrated oxides which are omnipresent in both natural and engineering applications. Transferability of force fields to analogous hydrated oxides without rigorous investigations may result in misleading property predictions. Herein, we focus on two common empirical force fields, the simple point charge ClayFF potential and the core-shell potential to study tobermorite minerals, the most prominent family of Calcium-Silicate-Hydrates that are complex hydrated oxides. We benchmark the predictive capabilities of these force fields against first principles results. While the structural information seem to be in close agreement with DFT results, we find that for higher order properties such as elastic constants, the core-shell potential quantitatively improves upon the simple point charge model, and shows a larger degree of transferability to complex materials. In return, to remedy the deficiencies of the simple point charge potential for hydrated calcio-silicates, we suggest using both structural data and elasticity data for potential calibration, a new force field potential, CSH-FF. This re-parameterized version of ClayFF is then applied to simulating an atomistic model of cement (Pellenq et al., PNAS, 2009). We demonstrate that this force field improves the predictive capabilities of ClayFF, being considerably less computational intensive than the core-shell model.  相似文献   
4.
This paper reports a molecular simulation study on the adsorption of simple fluids (argon at 77 K) on hydroxylated silica surfaces and nanopores. The effect of surface chemistry is addressed by considering substrates with either partially or fully hydroxylated surfaces. We also investigate the effect of pore shape on adsorption and capillary condensation by comparing the results for cylindrical and hexagonal nanopores having equivalent sections (i.e., equal section areas). Due to the increase in the polarity of the surface with the density of OH groups, the adsorbed amounts for fully hydroxylated surfaces are found to be larger than those for partially hydroxylated surfaces. Both the adsorption isotherms for the cylindrical and hexagonal pores conform to the typical behavior observed in the experiments for adsorption/condensation in cylindrical nanopores MCM-41. Capillary condensation occurs through an irreversible discontinuous transition between the partially filled and the completely filled configurations, while evaporation occurs through the displacement at equilibrium of a hemispherical meniscus along the pore axis. Our data are also used to discuss the effect of surface chemistry and pore shape on the BET method. The BET surface for fully hydroxylated surfaces is much larger (by 10-20%) than the true geometrical surface. In contrast, the BET surface significantly underestimates the true surface when partially hydroxylated surfaces are considered. These results suggest that the surface chemistry and the choice of the system adsorbate/adsorbent is crucial in determining the surface area of solids using the BET method.  相似文献   
5.
This work reports Grand Canonical Monte-Carlo molecular simulation (GCMC) results of water adsorption in a priori hydrophobic microporous solids such as silicalite, a purely siliceous zeolite (Øpore~5 Å) and C-Y, a pure carbon replica of zeolite Y (Øpore~1 nm). At a first step, in both cases, the water-water interactions are described with the SPC model (calibrated for bulk liquid water) while water-substrate interactions are calculated within the framework of the PN-TrAZ model. This adsorbate-zeolite potential decomposes into short range (repulsive, inductive and dispersive) interaction terms with transferable parameters plus, in the case of silicalite, an electrostatic interaction term based on SPC partial charges for water and ab initio charges for silicalite. With such a standard approach, we found that water fills the microporous volume in both materials at pressure value well below P 0; hence does not show a strong hydrophobic behaviour at variance with reference experiments (V. Eroshenko et al. in C. R. Phys. 3:111, 2002). This indicates that common models used to describe confined polar molecules are far from being operative. We show on the basis of periodic ab initio calculations that confined water molecules in silicate have a dipole value ~10% smaller than that in the 3D liquid phase indicating that the environment felt by a confined water molecule in silicalite pores is not equivalent to that in the bulk liquid. This implies that classical simulations of polar molecules in ultra confining environment should rely on polarizable potentials (K.S. Smirnov, D. Bougeard in Chem. Phys. 292:53, 2003) if one wishes to capture the underlying physics. Reducing the SPC water dipole moment by 5% in GCMC calculations does allow reproducing experimental data.  相似文献   
6.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   
7.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   
8.
Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca(2+) counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca(2+) counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca(2+) counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca(2+) counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca(2+)-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.  相似文献   
9.
Then-alkanes of different lengths were preadsorbed to selectively block part of the micropores of a MFI-type zeolite, Silicalite-I. The porosity available to argon and nitrogen was then studied by quasi-equilibrium adsorption microcalorimetry and volumetry at 77K and compared to what was found for the bare zeolite. Indeed, although partial adsorption ofn-alkanes does not alter the value of the differential enthalpies of adsorption for both argon and nitrogen, then-butane preadsorption diminishes the adsorption capacity by inducing inaccessible volumes in the micropore network. Moreover, the microcalorimetric experiments clearly show thatn-butane is not evenly distributed in the zeolite channel network while the longern-alkanes used are.  相似文献   
10.
The European Physical Journal E - The adsorption of water on porous silica surfaces at 300 K, has been qualitatively reproduced by Grand Canonical Monte Carlo simulations (GCMC) without any...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号