首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   19篇
力学   2篇
数学   2篇
物理学   8篇
  2021年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1988年   3篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Carbon nanotubes have been featured prominently in the nanotechnology research for some time, yet robust strategies for noncovalent chemical modification of the nanotube surface are still missing. Such strategies are essential for the creation of functional device architectures. Here, we present a new general procedure for carbon nanotube modification based on polyelectrolyte layer-by-layer assembly. We have built multilayer structures around individual carbon nanotube bridges by first modifying the nanotube surface with a pyrene derivative followed by layer-by-layer deposition of polyelectrolyte macroions on the nanotube. Transmission electron microscopy and scanning confocal fluorescence microscopy images confirm the formation of nanometer-thick amorphous polymer nanoshells around the nanotubes. These multilayer polyelectrolyte shells on individual carbon nanotubes introduce nearly unlimited opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent structures.  相似文献   
2.
3.
4.
5.
6.
7.
8.
Nanostructured eutectic NiAl–W, fabricated using a Bridgman-type directional solidification facility, combines the advantages of single individual nanowires with the benefit of a conductive macroscopic matrix. Through an electrochemical dissolution step, using conditions derived from the combined Pourbaix diagrams of all three elements involved, the NiAl matrix is selectively dissolved allowing the release of embedded W nanowires. An application of micro-scale electrochemical techniques, such as scanning droplet cell microscopy, facilitates not only selective but moreover local matrix dissolution. Such a local dissolution leads to the formation of cavities on the micro-scale containing arrays of single crystalline W nanowires. In this connection, the depth and volume of fabricated microvials can directly be determined from the charge consumed during potentiostatic dissolution. A subsequent surface functionalisation enhances the hydrophobic behaviour, which is already observed for non-functionalised nanowire arrays, resulting in measured contact angles close to the border to superhydrophobicity.  相似文献   
9.
The MHD Couette flow of two immiscible fluids in a parallel plate channel in the presence of an applied electric and inclined magnetic field is investigated in the paper. One of the fluids is assumed to be electrically conducting, while the other fluid and the channel plates are assumed to be electrically insulating. Separate solutions with appropriate boundary conditions for each fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The partial differential equations governing the flow and heat transfer are transformed to ordinary differential equations and closed-form solutions are obtained in both fluid regions of the channel. The results for various values of the Hartmann number, the angle of magnetic field inclination, the loading parameter and the ratio of the heights of the fluids are presented graphically to show their effect on the flow and heat transfer characteristics.  相似文献   
10.
Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states and folding pathways. We reconcile these two pictures in a combined experimental and simulation study of acyl-coenzyme A binding protein (ACBP), a two-state folder (folding time ~10 ms) exhibiting residual unfolded-state structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenesis, we first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing experiments to study the folding kinetics of ACBP on the microsecond time scale. These studies, along with Trp-Cys quenching measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (~100 μs) time scale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar way. A Markov state model (MSM) of the ACBP folding reaction, constructed from over 30 ms of molecular dynamics trajectory data, predicts a complex network of metastable stables, residual unfolded-state structure, and kinetics consistent with experiment but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate but rather to a more heterogeneous and slow acquisition of unfolded-state structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号