首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
物理学   1篇
  2013年   1篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The cellular photosensitivity caused by aluminum phthalocyanines sulfonated to different degrees (AlPcSn) has been investigated. The phototoxic effect increased with decreasing number of sulfonate groups on the macrocycle, with the exception of AlPcS1 which was less phototoxic than AlPcS2 but more phototoxic than AlPcS3 and AlPcS4. The tendency of the AlPcSns to aggregate in our cellular system increased with increasing lipophilicity of the sensitizers. The aggregates had little or no photosensitizing activity. The low efficiency of cell inactivation caused by AlPcS1 can be explained by the highly aggregated state of this sensitizer in the cells. AlPcS2 and AlPcS3 induced a lower degree of cell inactivation per fluorescing quantum and per quantum absorbed by monomeric species than did AlPcS2 and AlPcS1. AlPcS4 and AlPcS3 are therefore suggested to be in different intracellular locations than AlPcS2 and AlPcS1.  相似文献   
2.
The possible effects of PVP (poly(N-vinylpyrrolidone)) on the properties of liquid and water in clathrate hydrate has been investigated using NVT molecular dynamics simulations. A model for a monomer of the PVP polymer is immersed in three systems, liquid water, a unit cell of a hydrate in liquid water with a hydrate former and a third system where some of the liquid water molecules of this last system are replaced by a PVP monomer. Both molecular dynamics simulation and integral equation theory predict hydrogen bonding between the double bonded oxygen in the PVP ring and hydrogens in water. For the composite system, the PVP monomer has a preference for hydrogen bonding to hydrogens from the water molecules at the surface of the hydrate lattice. The simulations indicate that the PVP monomer tends to orient perpendicular to the hydrate surface. For the model systems in this study PVP may form hydrogen bonds with liquid water through the double bonded oxygen in the ring. When a hydrate crystal is immersed in the liquid water phase this hydrogen bonding is shifted towards the hydrate due to a more favourable Coulomb interaction involving hydrogens from more than one water molecule at the hydrate surface. The PVP monomer has a preference for perpendicular orientation with respect to the hydrate surface. A scheme is suggested for the characterization of kinetic hydrate inhibitors based on molecular dynamics simulations and on three basic properties. In addition to the energy between the active groups of the inhibitor and hydrate water another point of focus is the free energy changes in the interactions between the inhibitor and water as the charges are changed from zero to the original model charges. In particular the difference between this integral for the (hydrate water)–(PVP monomer) interaction and the (liquid water)–(PVP inhibitor) interaction should reflect the driving forces in freezing the inhibitor out from the liquid water phase and onto the hydrate surface. The third property in the characterization scheme is the diffusivities of groups connecting to the hydrate crystal, relative to the diffusivities of the hydrate crystal. Results are presented from simulations where a small cavity with a methane model as a guest is immersed in liquid water with free methane molecules at a temperature of 150K. Changes in structure, diffusivities and energy indicate a tendency towards a more solid–like structurde around the cavity.  相似文献   
3.
NHIK 3025 cells were incubated with Photofrin II (PII) and/or tetra (3-hydroxyphenyl)porphyrin (3THPP) and exposed to light at either 400 or 420 nm, i.e. at the wavelengths of the maxima of the fluorescence excitation spectra of the two dyes. The kinetics of the photodegradation of the dyes were studied. When present separately in the cells the two dyes are photodegraded with a similar quantum yield. 3THPP is degraded 3-6 times more efficiently by light quanta absorbed by the fluorescent fraction of 3THPP than by light quanta absorbed by the fluorescent fraction of PII present in the same cells. The distance diffused by the reactive intermediate, supposedly mainly 1O2, causing the photodegradation was estimated to be on the order of 0.01-0.02 micron, which corresponds to a lifetime of 0.01-0.04 microsecond of the intermediate in the cells. PII has binding sites at proteins in the cells as shown by an energy transfer band in the fluorescence excitation spectrum at 290 nm. During light exposure this band decays faster than the Soret band of PII under the present conditions. Photoproducts (1O2 etc.) generated at one binding site contribute significantly in the destruction of remote binding sites.  相似文献   
4.
Human cervix carcinoma cells of the line NHIK 3025 were incubated for 18 h with sulfonated meso-tetraphenylporphines (TPPSn where n = 1, 2a, 2o or 4) followed by 1 h in sensitizer-free medium and then exposed to light. The fluorescing fraction of TPPS4, TPPS2o and TPPS2a has recently been shown to be located intracellularly in extracellular granules which are intracellularly localized in a similar pattern as acridine orange-stained granules, assumed to be endosomes and lysosomes (Berg, K., A. Western, J. Bommer and J. Moan. Photochem. Photobiol. 52, 481-487). Light exposure induced a relocalization of TPPS4 from its granular pattern to mainly the nuclear area while TPPS2o and TPPS2a relocalized mainly to cytoplasmic areas. After the light-induced relocalization TPPS4 became less efficient in sensitizing photoinactivation of cells as measured per fluorescing cellbound TPPS4 molecules while TPPS2a and TPPS2o became more efficient. These changes were independent of the extracellular concentration of TPPSn applied to the cells, except for cells incubated with 75 micrograms/mL TPPS4. These cells became more sensitive to light after a light exposure inactivating 20% of the cells. This increased photosensitivity seems to be related to a 2-2.5 fold increase in the amount of fluorescing cellbound TPPS4 induced by the first light exposure.  相似文献   
5.
The ultraviolet absorption spectra and self reaction kinetics of CF3CCI2 and CF3CCI2O2 radicals have been studied in the gas phase at 295K. Absorption cross sections were quantified over the wavelength range 220–300 nm. Measured cross sections near the absorption maxima were γCF3CCI2(230 nm) = (9.70 ± 1.47) x 10-18 and γCF3CCI2O2(250 nm) = (1.70 ± 0.26) x 10-18 cm2 molecule-1. Errors are statistical (2γ) together with our estimate of potential systematic errors. Rate constants for the self reaction of CF3CCI2 and CF3CCI2O2 radicals were measured to be k6 = (2.46 ± 0.43) x 10-12 and k7obs = (3.33 ± 0.53) x 10-12 cm3 molecule-1 s-1, respectively. Results are discussed with respect to the existing database concerning halogenated peroxy radicals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号