首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   5篇
化学   14篇
力学   2篇
数学   11篇
物理学   5篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1983年   2篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Highly charged ions (HCIs) have huge potential energy due to their high charge state. When a HCI reaches a solid surface, its potential energy is released immediately on the surface to cause a nano-scale defect. Thus, HCIs are expected to be useful for solid-surface modifications on the nano-scale. We investigate the defects on a highly oriented pyrolytic graphite (HOPG) surface induced by slow highly charged Ar^q+ ions with impact energy of 20-2000qeV with scanning probe microscopy (SPM). In order to clarify the role of kinetic and potential energies in surface modification, the nano-defects are characterized in lateral size and height corresponding to the kinetic energy and charge state of the HCIs. Both the potential energy and kinetic energy of the ions may influence the size of nano-defect. Since potential energy increases dramatically with increasing charge state, the potential energy effect is expected to be much larger than the kinetic energy effect in the case of extremely high charge states. This implies that pure surface modification on the nano-scale could be carried out by slow highly charged ions. The mean size of nano-defect region could also be controlled by selecting the charge state and kinetic energy of HCI.  相似文献   
2.
We calculate the interfacial tension of theN-state chiral Potts model by solving the functional relations for the transfer matrices of the model with skewed boundary conditions. Our result is valid for the general physical model (with positive Boltzmann weights) and at all subcritical temperatures. The interfacial tension has been calculated previously for the superintegrable chiral Potts model with skewed boundary conditions. UsingZ-invariance, Baxter has argued that the interfacial tension of this model should be the same as the interfacial tension of the general physical model. We show that this is indeed the case.  相似文献   
3.
4.
Pyrrolidine-amide oligonucleotide mimics (POMs) exhibit promising properties for potential applications, including in vivo DNA and RNA targeting, diagnostics and bioanalysis. Before POMs can be evaluated in these applications it is first necessary to synthesise and establish the properties of fully modified oligomers, with biologically relevant mixed sequences. Accordingly, Boc-Z-protected thyminyl, adeninyl and cytosinyl POM monomers were prepared and used in the first successful solid phase synthesis of a mixed sequence POM, Lys-TCACAACTT-NH2. UV thermal denaturation studies revealed that the POM oligomer is capable of hybridising with sequence selectivity to both complementary parallel and antiparallel RNA and DNA strands. Whilst the duplex melting temperatures (Tm) were higher than the corresponding duplexes formed with isosequential PNA, DNA and RNA oligomers the rates of association/dissociation of the mixed sequence POM with DNA/RNA targets were noticeably slower.  相似文献   
5.
Two sets of planar pointsS 1 andS 2 are circularly separable if there is a circle that enclosesS 1 but excludesS 2. We show that deciding whether two sets are circularly separable can be accomplished inO(n) time using linear programming. We also show that a smallest separating circle can be found inO(n) time, and largest separating circles can be found inO(n logn) time. Finally we establish that all these results are optimal.  相似文献   
6.
7.
Industrial synthesis is driven by a delicate balance of the value of the product against the cost of production. Catalysts are often employed to ensure product turnover is economically favorable by ensuring energy use is minimized. One method, which is gaining attention, involves cooperative catalytic systems. By inserting a flexible polymer into a metal–organic framework (MOF) host, the advantages of both components work synergistically to create a composite that efficiently fixes carbon dioxide to transform various epoxides into cyclic carbonates. The resulting material retains high yields under mild conditions with full reusability. By quantitatively studying the kinetic rates, the activation energy was calculated, for a physical mixture of the catalyst components to be about 50 % higher than that of the composite. Through the unification of two catalytically active components, a new opportunity opens up for the development of synergistic systems in multiple applications.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号