首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
化学   1篇
物理学   6篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 18 毫秒
1
1.
2.
The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired.  相似文献   
3.
A computer model of the auditory periphery is used to study the involvement of auditory-nerve (AN) adaptation in forward-masking effects. An existing model is shown to simulate published AN recovery functions both qualitatively and quantitatively after appropriate parameter adjustments. It also simulates published data showing only small threshold shifts when a psychophysical forward-masking paradigm is applied to AN responses. The model is extended to simulate a simple but physiologically plausible mechanism for making threshold decisions based on coincidental firing of a number of AN fibers. When this is used, much larger threshold shifts are observed of a size consistent with published psychophysical observations. The problem of how stimulus-driven firing can be distinguished from spontaneous activity near threshold is also addressed by the same decision mechanism. Overall, the modeling results suggest that poststimulatory reductions in AN activity can make a substantial contribution to the raised thresholds observed in many psychophysical studies of forward masking.  相似文献   
4.
Virtual pitch in a computational physiological model   总被引:2,自引:0,他引:2  
A computational model of nervous activity in the auditory nerve, cochlear nucleus, and inferior colliculus is presented and evaluated in terms of its ability to simulate psychophysically-measured pitch perception. The model has a similar architecture to previous autocorrelation models except that the mathematical operations of autocorrelation are replaced by the combined action of thousands of physiologically plausible neuronal components. The evaluation employs pitch stimuli including complex tones with a missing fundamental frequency, tones with alternating phase, inharmonic tones with equally spaced frequencies and iterated rippled noise. Particular attention is paid to differences in response to resolved and unresolved component harmonics. The results indicate that the model is able to simulate qualitatively the related pitch-perceptions. This physiological model is similar in many respects to autocorrelation models of pitch and the success of the evaluations suggests that autocorrelation models may, after all, be physiologically plausible.  相似文献   
5.
Adaptation in a revised inner-hair cell model   总被引:3,自引:0,他引:3  
A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex was recently presented [Sumner et al., J. Acoust. Soc. Am. 111, 2178-2188 (2002)]. One key improvement is that the model reproduces the rate-intensity functions of low- (LSR), medium- (MSR), and high-spontaneous rate (HSR) fibers in the guinea-pig. Here we describe the adaptation characteristics of the model, and how they vary with model fiber type. Adaptation of the revised model for a HSR fiber is in line with an earlier version of the model [Meddis and Hewitt, J. Acoust. Soc. Am. 90, 904-917 (1991)]. In guinea-pig, poststimulus time histograms (PSTH) have been found to show less adaptation in LSR fibers. Evidence from chinchilla suggests that this is due to chronic adaptation resulting from short interstimulus intervals, and that fully recovered LSR fibers actually show more adaptation. However, the model is able to account for both variations of PSTH shape when fully recovered from adaptation. Interstimulus interval can also affect recovery in the model. The model is further tested against data previously used to evaluate models of AN adaptation. The tests are (i) recovery from adaptation of spontaneous rate and (ii) the recovery of response to acoustic stimuli ("forward masking"), (iii) the response to stimulus increments and (iv) decrements, and (v) the conservation of transient components. A HSR model fiber performs similarly to the earlier version of the model. However, there is considerable variation in response to increments and decrements between different model fibers.  相似文献   
6.
Computational algorithms that mimic the response of the basilar membrane must be capable of reproducing a range of complex features that are characteristic of the animal observations. These include complex input output functions that are nonlinear near the site's best frequency, but linear elsewhere. This nonlinearity is critical when using the output of the algorithm as the input to models of inner hair cell function and subsequent auditory-nerve models of low- and high-spontaneous rate fibers. We present an algorithm that uses two processing units operating in parallel: one linear and the other compressively nonlinear. The output from the algorithm is the sum of the outputs of the linear and nonlinear processing units. Input to the algorithm is stapes motion and output represents basilar membrane motion. The algorithm is evaluated against published chinchilla and guinea pig observations of basilar membrane and Reissner's membrane motion made using laser velocimetry. The algorithm simulates both quantitatively and qualitatively, differences in input/output functions among three different sites along the cochlear partition. It also simulates quantitatively and qualitatively a range of phenomena including isovelocity functions, phase response, two-tone suppression, impulse response, and distortion products. The algorithm is potentially suitable for development as a bank of filters, for use in more comprehensive models of the peripheral auditory system.  相似文献   
7.
The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号