首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
数学   2篇
物理学   22篇
  2016年   3篇
  2014年   3篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
1.
Results of acoustic measurements in skeletal muscle are generalized. It is shown that assessment of the pathologies and functional condition of the muscular system is possible with the use of shear waves. The velocity of these waves in muscles is much smaller than the velocity of sound; therefore, a higher symmetry type is formed for them. In the presence of a preferential direction (along muscle fibers), it is characterized by only two rather than five (as in usual media with the same anisotropy) moduli of elasticity. A covariant form of the corresponding wave equation is presented. It is shown that dissipation properties of skeletal muscles can be controlled by contracting them isometrically. Pulsed loads (shocks) and vibrations are damped differently, depending on their frequency spectrum. Characteristic frequencies on the order of tens and hundreds of hertz are attenuated due to actin-myosin bridges association/dissociation dynamics in the contracted muscle. At higher (kilohertz) frequencies, when the muscle is tensed, viscosity of the tissue increases by a factor of several tens because of the increase in friction experienced by fibrillar structures as they move relative to the surrounding liquid; the tension of the fibers changes the hydrodynamic conditions of the flow around them. Finally, at higher frequencies, the attenuation is associated with the rheological properties of biological molecules, in particular, with their conformational dynamics in the wave field. Models that describe the controlled shock dissipation mechanisms are proposed. Corresponding solutions are found, including those that allow for nonlinear effects.  相似文献   
2.
Tissue water content is an important diagnostic parameter that can be used for estimation of water loss in muscles such as common dehydration during high endurance exercises. It could be also applied for evaluation of the increased fluids content in the tissue caused by the variety of pathological conditions or edemas. Ultrasonic method for tissue water content monitoring is based on the premise that the speed of a bulk or compression sound wave is determined mainly by the molecular content of the tissue. Most soft tissues, including muscles that consist of about 70-80% water, exhibit shift of the ultrasound velocity associated with the change in their water content. In the present paper, we tested the feasibility of assessing changes in tissue water content by measurements of ultrasound velocity in ex vivo animal muscle tissues. An increase in the ultrasound velocity correlated with the volumetric water loss in the tissue was observed when other tissue components (proteins, fat) remained constant. Possibility to assess muscle dehydration with 1% accuracy was confirmed in model dehydration experiments, where ultrasound velocity slope of about 3 m/s per 1% of water loss was revealed at measurement error less than 2 m/s. Hence, the ultrasonic approach can provide basis for a convenient, lightweight system in sports medicine for monitoring total body hydration during long-term endurance exercise in hot conditions, as well as for edemas monitoring and other medical applications.  相似文献   
3.
We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.  相似文献   
4.
A comparative study of two methods used for dynamic focusing of ultrasound: the conventional phased arrays and a new method based on time reversal of acoustic signals is carried out. A laboratory model of the focusing system based on time reversal is developed and manufactured. One of the principal elements of the system is a reverberator with several piezoelectric transducers attached to its walls. Experiments are carried out to demonstrate the ability of such a system to generate one focus or several foci and to steer them electronically at considerable distances (50 mm at minimum) off the axis of the focusing system without causing the appearance of any grating lobes or other secondary intensity maxima. The focusing properties of the system are compared with the results of numerical simulation of two-dimensional phased arrays, whose parameters are taken to be typical for the arrays used in extracorporeal surgery. The important role of randomization is demonstrated for both of the aforementioned focusing methods. The prospects of practical application of the two methods are discussed.  相似文献   
5.
Interaction of therapeutic ultrasound with purified enzymes in vitro   总被引:1,自引:0,他引:1  
The effects of ultrasound on the rates of the catalytic reactions of four purified enzymes in vitro have been extensively investigated under a wide range of biochemical and physical exposure conditions. In general, it can be concluded that therapeutic intensities of continuous wave 0.88 MHz ultrasound had no detectable direct effects on the rates of the reactions catalysed by creatine kinase, lactate dehydrogenase, hexokinase and pyruvate kinase. Some minor effects were noted. These were: an indirect effect resulting from mixing within the sample chamber caused by quartz wind streaming; an effect on partially-hydrated cross-linked enzyme systems which appears to be the result of increased fluid penetration of the solid matrix in the presence of ultrasound; and an increase in the rate of spontaneous dissociation of a multimeric enzyme system. It is, therefore, concluded that a direct interaction between ultrasound and the catalytic functioning of individual enzyme molecules is unlikely to be the primary step in any acousto-biological interaction, and that this primary interaction appears to be occurring at a higher level of organizational complexity.  相似文献   
6.
We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.  相似文献   
7.
The objective of this study was to evaluate if the Bone UltraSonic Scanner (BUSS) can detect osteoporosis in postmenopausal women. BUSS is an axial transmission multi-frequency ultrasonometer for acquisition of wave propagation profiles along the proximal anterior tibia. We derived 10 diagnostically significant BUSS parameters that were then compared with the DXA spine T-score, which was used in this study as the “gold standard” for the assessment of osteoporosis (T-score <−2.5). BUSS wave parameters were studied in 331 postmenopausal women examined by 9 trained operators at 3 clinical sites with use of 3 devices. The efficiency of each BUSS parameter in osteoporosis detection was assessed using a receiver operating characteristic curve analysis. Area under the curve (AUC) for each of 10 parameters ranged from 58.1% to 70.2%. Using these parameters a linear classifier was derived which provided at its output 83.0% AUC, 87.7% sensitivity and 63.2% specificity to DXA-identified osteoporosis. The results of this study confirm BUSS’s capability to detect osteoporosis in postmenopausal women.  相似文献   
8.
Tatarinov  A. M.  Egorov  V. P.  Sarvazyan  A. P. 《Acoustical Physics》2009,55(4-5):665-673

The article is a review of the new dual-frequency method in axial bone quantitative ultrasonometry for assessment of changes in cortical bones in osteoporosis. The method is based on the use of two frequencies for the generation of flexural and longitudinal ultrasonic waves, which opens possibilities for differential diagnostics of changes in various components of the state of the skeletal system, such as cortical layer thickness, porosity, and elastic properties of tissue. The axial scanning and composition of two-dimensional acoustic profiles of bones are carried out with the purpose of using topographic variations in the acoustic properties for diagnostics of the state of a bone. Results of laboratory and clinical tests of Bone UltraSonic Scanner (BUSS) developed in Artann Laboratories on the basis of the stated principles are presented. The sensitivity of measured characteristics to progression of osteoporosis and the detectability of early changes in bones related to this disease are shown.

  相似文献   
9.
Multiple acoustic wave mode method has been proposed as a new modality in axial bone QUS. The new method is based on measurement of ultrasound velocity at different ratio of wavelength to the bone thickness, and taking into account both bulk and guided waves. It allows assessment of changes in both the material properties related to porosity and mineralization as well as the cortical thickness influenced by resorption from inner layers, which are equally important in diagnostics of osteoporosis and other bone osteopenia. Developed method was validated in model studies using a dual-frequency (100 and 500 kHz) ultrasound device. Three types of bone phantoms for long bones were developed and tested: (1) tubular specimens from polymer materials to model combined changes of material stiffness and cortical wall thickness; (2) layered specimens to model porosity in compact bone progressing from endosteum towards periosteum; (3) animal bone specimens with both cortical and trabecular components. Observed changes of the ultrasound velocity of guided waves at 100 kHz followed gradual changes in the thickness of the intact cortical layer. On the other hand, the bulk velocity at 500 kHz remained nearly constant at the different cortical layer thickness but was affected by the material stiffness. Similar trends were observed in phantoms and in fragments of animal bones.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号