首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   10篇
物理学   12篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有22条查询结果,搜索用时 93 毫秒
1.
A novel magnetic resonance imaging approach, called diffusion-direction-dependent imaging (DDI), is introduced. Due to inherent anisotropic diffusion properties, peripheral nerves can be visualized on diffusion tensor imaging (DTI). The largest signal attenuation on DTI correlates with the direction of a nerve fiber, and the least signal attenuation correlates with the direction perpendicular to the nerve fiber. Since low signal-to-noise ratio is a concern in peripheral nerve DTI, we explored a new approach focusing on the perpendicular diffusion direction. A 36-gradient diffusion direction scheme was used. A mean expected curve specific for peripheral nerves was calculated based on the sciatic nerve and its division into the common peroneal nerve and the tibial nerve in three healthy volunteers. By a simple postprocessing method, a comparison of the mean expected curve and the measured curve was made voxel by voxel, and the sciatic nerve and its division were reconstructed, excluding other tissues. More studies are needed to investigate whether other postprocessing methods or other diffusion direction schemes are more suited for peripheral nerve imaging with DDI. Further studies may also be of interest to investigate whether DDI can be a complementary method to conventional T(1)-weighted and T(2)-weighted sequences in the imaging of peripheral nerve pathology or even in the visualization of other tissues, possibly with different diffusion direction schemes.  相似文献   
2.
We here exploit the recently reported thermodynamic preference for poly(dAdT)(2) over mixed-sequence calf thymus (ct) DNA of two binuclear ruthenium complexes, DeltaDelta-[mu-bidppz(bipy)4Ru2](4+) (B) and DeltaDelta-[mu-bidppz(phen)(4)Ru(2)](4+) (P), that bind to DNA by threading intercalation, to determine their intrinsic dissociation rates. After adding poly(dAdT)(2) as a sequestering agent to B or P bound to ct-DNA, the observed rate of change in luminescence upon binding to the polynucleotide reflects the rate of dissociation from the mixed sequence. The activation parameters for the threading and dissociation rate constants allow us for the first time to characterize the thermodynamics of the exceedingly slow threading intercalation equilibrium of B and P with ct-DNA. The equilibrium is found to be endothermic by 33 and 76 kJ/mol, respectively, and the largest part of the enthalpy difference between the complexes originates from the forward threading step. At physiological temperature (37 degrees C) B and P have dissociation half-lives of 18 and 38 h, respectively. This is to our knowledge the slowest dissociating noncovalently bound DNA-drug reported. SDS sequestration is the traditional method for determination of rate constants for cationic drugs dissociating from DNA. However, the rates may be severely overestimated for slowly dissociating molecules due to unwanted catalysis by the SDS monomers and micelles. Having determined the intrinsic dissociation rates with poly(dAdT)(2) as sequestering agent, we find that the catalytic effect of SDS on the dissociation rate may be up to a factor of 60, and that the catalysis is entropy driven. A simple kinetic model for the SDS concentration dependence of the apparent dissociation rate suggests an intermediate that involves both micelles and DNA-threaded complex.  相似文献   
3.
4.
5.
We recently reported that ruthenium complexes, with general structure [mu-bidppz(bipy)4Ru2](4+) (B) or [mu-bidppz(phen)4Ru2](4+) (P) (bidppz=11,11'-bi(dipyrido[3,2- a:2',3'-c]phenazinyl)), show extreme kinetic selectivity for long AT tracts over mixed-sequence calf thymus DNA (ct-DNA), a selectivity that also varies markedly with the size (between B and P) and sense of chirality of the complex. Earlier studies, exploiting the great increase in luminescence intensity when the compound intercalates, have yielded complex kinetics indicating the presence of both first- and second-order processes. Even with a homogeneous DNA sequence, such as poly(dAdT)2, the luminescence kinetics generally requires more than a single exponential for a satisfactory fit. We here reveal that at least part of the complexity is a result of the extreme sensitivity of the effective quantum yield of the complexes, so that the luminescence trajectories also reflect subtle variations in the environment and binding geometry that the complex is sampling on its path to its final binding site. By monitoring the rearrangement process using circular dichroism (CD), we show that threading of both enantiomers of B and P into poly(dAdT)2 is effectively a monoexponential process, as expected if the compounds are not affecting each other during the intercalation process. Thus, the complex luminescence trajectories may be explained by slow relaxations in the binding geometry (DNA conformation) and associated changes in the environment of the entering complexes. To further disentangle the intriguing features of the threading intercalation kinetics, and how they may depend on the flexibility and size of the ruthenium complexes, we have also designed and studied two new ruthenium complexes, [mu-dtpf(phen)4Ru2](4+) (F) (dtpf=4,5,9,12,16,17,21,25-octaaza-23 H-ditriphenyleno[2,3-b:2,3-h]fluorene), in which the bridging ligand is made totally rigid, and [mu-bidppz([12]aneS4) 2Ru2](4+) (S), which has less bulky, nonaromatic ancillary ligands. The threading of F into poly(dAdT)2, also found to be a monoexponential process, is about 3 times slower than for P, indicating that the flexibility of the bridging ligand is an important factor for the intercalation rate. Surprisingly, in contrast to all other compounds, S requires two exponentials to fit its binding kinetics as monitored by CD. Also surprisingly, in view of the smaller steric bulk, even the fastest phase is roughly 2 times slower for S than for B and P. Thus, not only the size of the ancillary ligand but also other properties that can influence the energy landscape of the threading path are rate-determining factors. With mixed-sequence ct-DNA, threading of B and that of P are both multiphasic processes when monitored with CD as well as with luminescence. The rate constants for threading into ct-DNA show much larger variations between complexes than for poly(dAdT)2, confirming earlier results based on luminescence data.  相似文献   
6.
The aim of this study was to establish a rapid method for in vivo quantification of a large range of flow velocities using phase information. A basic gradient-echo sequence was constructed, in which flow was encoded along the slice selection direction by variation of the amplitude of a bipolar gradient without changes in sequence timings. The influence of field inhomogeneities and eddy currents was studied in a 1.5 T scanner. From the basic sequence, interleaved sequences for calibration and in vivo flow determination were constructed, and flow information was obtained by pairwise subtraction of velocity-encoded from velocity non-encoded phase images. Calibration was performed in a nongated mode using flow phantoms, and the results were compared with theoretically calculated encoding efficiencies. In vivo flow was studied in healthy volunteers in three different areas using cardiac gating; central blood flow in the great thoracic vessels, peripheral blood flow in the popliteal vessels, and flow of cerebrospinal fluid (CSF) in the cerebral aqueduct. The results show good agreement with results obtained with other techniques. The proposed method for flow determination was shown to be rapid and flexible, and we thus conclude that it seems well suited for routine clinical MR examinations.  相似文献   
7.
In the long succession of small transition-metal compounds interacting reversibly with DNA, semirigid binuclear ruthenium complexes stand out by displaying exceptionally slow binding kinetics. To reach the final intercalated state, one of the bulky metal centers has to be threaded through the base stack, leading to a high level of structural discrimination. This makes the idea of utilizing binuclear complexes interesting in applications involving DNA sequence or conformation recognition. The finding that threading intercalation of the two structural analogues, Lambda,Lambda-[mu-(11,11'-bidppz)X4Ru2]4+, X = 2,2'-bipyridine (Lambda,Lambda-B4) and X = 1,10'-phenanthroline (Lambda,Lambda-P4), into poly(dA-dT)2 can be described by surprisingly simple rate laws encouraged more extensive studies and analysis of these two systems. Kinetic measurements at different [basepair]/[complex] ratios show that Lambda,Lambda-B4 intercalates via a pseudo-first-order mechanism independent of binding density, whereas Lambda,Lambda-P4 displays a gradual transition from apparent first- to second-order kinetics when decreasing the [basepair]/[complex] mixing ratio. By employing the probabilistic method of McGhee and von Hippel, a rate law based on a supposed mechanism has been globally fitted and numerically integrated to describe threading of Lambda,Lambda-P4. In contrast to Lambda,Lambda-B4, the first-order mechanism of this analogue appears to require a long stretch of nonthreaded DNA. The results show that ancillary ligand structures indeed affect the mechanism of DNA threading, demonstrating the potential use of semirigid binuclear ruthenium complexes to target DNA.  相似文献   
8.
9.
10.
This paper describes and tests the LL-EPI method for obtaining quantitative T1 estimates in a few seconds thereby allowing dynamic T1 studies. It is shown that the method works even when there is an inflow into the imaged volume, e.g., in a vessel. No calibration is needed. The method has been tested in a phantom study with several different scan parameter set-ups, with and without inflow. The method shows robustness and individual scan parameters and inflow rates do not influence the ability to calculate the Gd-DTPA concentration. Linearity prevail between the measured 1/T1 and the Gd-DTPA concentration in the range 150 < T1 < 2500 ms. In a dynamic Gd-DTPA phantom study, it was shown that the dynamic LL-EPI T1 mapping technique was three times more sensitive than the signal from a T*2-weighted EPI sequence. In an in vivo study, dynamic T1 mapping of the Gd-DTPA uptake in a meningioma was performed. Inspection of the uptake curves indicates that the method is feasible in clinical perfusion studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号