首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   2篇
  国内免费   1篇
化学   52篇
晶体学   2篇
数学   26篇
物理学   132篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   9篇
  2010年   4篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   10篇
  2002年   15篇
  2001年   9篇
  2000年   11篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有212条查询结果,搜索用时 10 毫秒
1.
We have computed electronic structures and total energies of circularly confined two-dimensional quantum dots and their lateral dimers in zero and finite uniform external magnetic fields using different theoretical schemes: the spin-density-functional theory (SDFT), the current-and-spin-density-functional theory (CSDFT), and the variational quantum Monte Carlo (VMC) method. The SDFT and CSDFT calculations employ a recently-developed, symmetry-unrestricted real-space algorithm allowing solutions which break the spin symmetry. Results obtained for a six-electron dot in the weak confinement limit and in zero magnetic field as well as in a moderate confinement and in finite magnetic fields enable us to draw conclusions about the reliability of the more approximative SDFT and CSDFT schemes in comparison with the VMC method. The same is true for results obtained for the two-electron quantum dot dimer as a function of inter-dot distance. The structure and role of the symmetry-breaking solutions appearing in the SDFT and CSDFT calculations for the above systems are discussed. Received 16 October 2001 and Received in final form 17 January 2002  相似文献   
2.
Molybdenum single crystals are irradiated at 20 K with 6 MeV protons. The radiation damage and lattice defect annealing is studied by positron lifetime spectroscopy in the temperature range from 15 to 720 K. Loss of vacancies due to recombination with mobile interstitials is observed at 40 K (Stage I) in agreement with resistivity measurements. This is the first time Stage I is observed by positrons below 77 K. The implanted hydrogen decorates the vacancies around 100 K, which is consistent with a hydrogen migration energy in molybdenum:E M H = 0.3–0.4 eV. Clustering of spatially correlated vacancies takes place in a wide temperature region below the usual vacancy clustering stage (Stage III). Stage III is observed at rather low temperatures (400–480 K) due to the very high vacancy concentration. Hydrogen bound to vacancies and vacancy clusters is released above 540 K, which puts an upper limit to the hydrogen binding energy:E B H 1.4 eV. The present work emphasizes the advantage of employing a vacancy sensitive technique to study hydrogen in metals, where its intrinsic solubility is low. In such metals (as molybdenum) both the effective solubility and the effective mobility of hydrogen are strongly influenced by the presence of vacancies.  相似文献   
3.
In this work, we use first principles simulations to provide features of the dynamic scanning force microscopy imaging of adsorbed organic layers on insulating surfaces. We consider monolayers of formic (HCOOH) and acetic (CH(3)COOH) acid and a mixed layer of acetic and trifluoroacetic acids (CF(3)COOH) on the TiO(2)(110) surface and study their interaction with a silicon dangling bond tip. The results demonstrate that the silicon tip interacts more strongly with the substrate and the COO(-) group than the adsorbed acid headgroups, and, therefore, molecules would appear dark in images. The pattern of contrast and apparent height of molecules is determined by the repulsion between the tip and the molecular headgroups and by significant deformation of the monolayer and individual molecules. The height of the molecule on the surface and the size of the headgroup play a large role in determining access of the tip to the substrate and, hence, the contrast in images. Direct imaging of the molecules themselves could be obtained by providing a functionalized tip with attraction to the molecular headgroups, for example, a positive potential tip.  相似文献   
4.
5.
6.
Annihilation characteristics are calculated for positrons trapped in clean and impurity decorated vacancy clusters in Au. The positron lifetime depends strongly on the structure of the clusters. In a strongly relaxed vacancy cluster, the lifetime can become smaller than the lifetime in a single vacancy. The substitution of some neighbour atoms of a vacancy cluster by Fe atoms has only a minor effect on the positron lifetimes.  相似文献   
7.
The influence of swelling on the rheological and dewatering properties of high consistency nanocellulose based furnishes is considered. Different consistencies of suspensions (1–4 %) and furnishes (5–15 %) were prepared made of two distinctly different grades of nanocellulose containing, micro fibrillated (MFC) and nanofibrillated (NFC) cellulose, and systematic comparison between the rheological and dewatering parameters was conducted. The characterization of the rheological and dewatering properties was performed with a stress controlled rheometer combined with an immobilization cell in parallel plate geometry, as well as with an independent gravimetric dewatering device. The surface charge of nanofibrillated cellulose was found to influence the rheological and dewatering properties of the evaluated suspensions and furnishes due to its impact on swelling and effectively bound water. Due to the complex behavior of the novel materials, the immobilization times were difficult to determine from the changes in the damping factor, as often used for coating colors. Instead, we propose a modified method for determination of immobilization times based on a rheological analysis adopting the rate of change in viscoelastic loss factor over time, d(tan δ = G′′/G′)/dt, describing the critical point(s) in the ratio of the viscous to elastic stress response moduli. With this approach we show that it is possible to characterize immobilization of these materials incorporating the concept of the combined physical interactions of the components and the non-removable bound water, without requiring a direct measure of the nanocellulose surface swelling. Based on the results, we hypothesize that fibrillar swelling impacts the dewatering of MFC and NFC suspensions, and furnishes containing them, by an interfiber pore connectivity blocking/sealing mechanism, which effectively defines the immobilization of the material matrix at the end point of free water extraction caused by the physical blocking imposed by the remaining bound water.  相似文献   
8.
We study ground states and far-infrared spectra (FIR) of two electrons in four-minima quantum-dot molecule in magnetic field by exact diagonalization. Ground states consist of altering singlet and triplet states, whose frequency, as a function of magnetic field, increases with increasing dot–dot separation. When the Zeeman energy is included, only the two first singlet states remain as ground states. In the FIR spectra, we observe discontinuities due to crossing ground states. Non-circular symmetry induces anticrossings, and also an additional mode above ω+ in the spin-triplet spectrum. In particular, we conclude that electron–electron interactions cause only minor changes to the FIR spectra and deviations from the Kohn modes result from the low-symmetry confinement potential.  相似文献   
9.
The nucleus $\ensuremath {\rm ^{127}Sb}$ , which is on the neutron-rich periphery of the $\ensuremath \beta$ -stability region, has been populated in complex nuclear reactions involving deep-inelastic and fusion-fission processes with $\ensuremath {\rm {}^{136}Xe}$ beams incident on thick targets. The previously known isomer at 2325 keV in $\ensuremath {\rm {}^{127}Sb}$ has been assigned spin and parity $\ensuremath 23/2^+$ , based on the measured $\ensuremath \gamma$ - $\ensuremath \gamma$ angular correlations and total internal conversion coefficients. The half-life has been determined to be 234(12) ns, somewhat longer than the value reported previously. The 2194 keV state has been assigned $\ensuremath J^{\pi} = 19/2^+$ and identified as an isomer with $\ensuremath T_{1/2} = 14(1) {\rm ns}$ , decaying by two $\ensuremath E2$ branches. The observed level energies and transition strengths are compared with the predictions of a shell model calculation. Two $\ensuremath 15/2^+$ states have been identified close in energy, and their properties are discussed in terms of mixing between vibrational and three-quasiparticle configurations.  相似文献   
10.
Any analytic map φ of the unit disc ${\mathbb{D}}$ into itself induces a composition operator C φ on BMOA, mapping ${f \mapsto f \circ \varphi}$ , where BMOA is the Banach space of analytic functions ${f\colon \mathbb{D} \to \mathbb{C}}$ whose boundary values have bounded mean oscillation on the unit circle. We show that C φ is weakly compact on BMOA precisely when it is compact on BMOA, thus solving a question initially posed by Tjani and by Bourdon, Cima and Matheson in the special case of VMOA. As a crucial step of our argument we simplify the compactness criterion due to Smith for C φ on BMOA and show that his condition on the Nevanlinna counting function alone characterizes compactness. Additional equivalent compactness criteria are established. Furthermore, we prove the unexpected result that compactness of C φ on VMOA implies compactness even from the Bloch space into VMOA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号