首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   6篇
化学   128篇
晶体学   3篇
数学   25篇
物理学   41篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   1篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   19篇
  2012年   26篇
  2011年   12篇
  2010年   4篇
  2009年   9篇
  2008年   13篇
  2007年   12篇
  2006年   6篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  1995年   1篇
  1990年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   6篇
  1970年   1篇
  1966年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
1.
The metallacarborane [3,3′‐Co(1,2‐closo‐C2B9H11)2]? has been synthesized. This species allows the formation of redox couples in which both partners are negatively charged. The E1/2 potential can be tuned by adjusting the nature and number of substituents on B and C. The octaiodinated species [3,3′‐Co(1,2‐closo‐C2B9H7I4)2]? is the most favorable, as it is isolatable and stable in air. A DFT study on stability and redox potentials of complexes has been performed.  相似文献   
2.
Using the linearization of Einstein's equations for weak gravitational fields, a specific model of gravito-magnetofluid is elaborated. The study of wave formation and propagation in such a medium is necessarily connected to the existence of the cosmological constant.  相似文献   
3.
4.
The coordinate transformation approach is applied for the design of an optical mode adaptor between two different width waveguides in the near IR telecom optical domain. The control of the mode profile in the adaptor is achieved by considering a composite waveguide consisting of a thin metamaterial (MM) layer intercalated between 2???m thick SU8 photoresist slab and a glass substrate. We demonstrate that intercalated metafilm enables the realization of a space coordinate transformation and allows a precise control of the light propagation in the composite waveguide. Numerical simulations and experimental realizations of the metamaterial layer are performed in order to validate the device concept and realization feasibility.  相似文献   
5.
Nanocomposites from polyamide 11 and dried cellulose nanofibers (CNs), 16–30 nm in thickness and 50–400 nm in length, were prepared via direct melt mixing and their micro- and nano-mechanical properties were studied. (PF) QNM (Quantitative Nanomechanical Mapping) method was used to map nanomechanical properties at the surface of polyamide 11 and nanocomposites. This new AFM method emphasized both the increased modulus in nanocomposites as compared to the matrix and the microstructure on different levels in polyamide 11 and its nanocomposites. PF QNM showed that their crystalline structure consists of bundles of lamellar stacks, 200–350 nm in width and 20–40 nm wide lamellar stacks. Moreover, PF QNM study emphasized higher structural order in nanocomposites with 3 and 5 wt.% CNs and lower in the nanocomposite with 8 wt.% CNs as compared to the reference. These observations were verified and are consistent with both crystallinity values determined by DSC and micro-mechanical test results. The oriented bundles of lamellar stacks, observed by PF QNM, could be considered as the main blocks determining high mechanical properties for the studied nanomaterials.  相似文献   
6.
Venlafaxine (VFX) is a serotonin and norepinephrine reuptake inhibitor chiral drug used in therapy as an antidepressant in the form of a racemate consisting of R‐ and S‐VFX. The two enantiomers of VFX exhibit different pharmacological activities: R‐VFX inhibits both norepinephrine and serotonin synaptic reuptake, whereas S‐VFX inhibits only the serotonin one. R‐ and S‐VFX are metabolized in the liver to the respective R‐ and SO‐desmethylvenlafaxine (ODVFX), R‐ and SN‐desmethylvenlafaxine (NDVFX), and R‐ and SN,O‐didesmethylvenlafaxine (NODVFX). The pharmacological profile of ODVFX is close to that of VFX, whereas the other two chiral metabolites (NDVFX and NODVFX) have lower affinity for the receptor sites. The pharmacokinetics of the VFX enantiomers appear stereoselective, including the metabolism process. In the past 20 years, several studies describing the enantioselective analysis of R‐ and S‐VFX in pharmaceutical formulations and its chiral metabolites in biological matrices were published. These methods encompass liquid chromatography coupled with UV detection, mass spectrometry, or tandem mass spectrometry, and capillary electrophoresis. This paper reviews the published methods used for the determination of the individual enantiomers of VFX and its chiral metabolites in different matrices.  相似文献   
7.
8.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   
9.
Cyclodextrins are some of the most used carriers for bioactive compounds (as host–guest complex) and many factors influence the association–dissociation of this complex, some of them being related to hydrophobicity. In the solid state, cyclodextrins contain two types of water molecules: “surface” water molecules (especially close to the crystal surface) and “strong-bonded” water molecules (especially from the cyclodextrin cavity), but the classification is hard to do, and the concentration of these water molecules are relatively difficult to estimate by simple methods. In the present study we used the volumetric Karl Fischer titration to estimate these types of water molecules in cyclodextrins by means of the rate of water reaction (related to diffusion from cyclodextrin crystals). “Surface” water molecules are titrated with rates between 1.8–2.8 mM/s for α-cyclodextrin, while for β-cyclodextrin these rates are little bit higher (2.9–3.4 mM/s). The rates corresponding to “strong-bonded” water molecules are approximately tens fold lower (0.05–0.3 mM/s for α-cyclodextrin and 0.15–0.33 mM/s for β-cyclodextrin). The approximate ratio between “surface” and “strong-bonded” water molecules could also be estimated by this simple and rapid method.  相似文献   
10.
Dendrimers bearing hydroxyl groups supported by layered double hydroxides (CO3–LDH) with Mg/Al ratio ranging from 1:1 to 5:1 showed improved properties for the reversible capture of carbon dioxide (CO2). The adsorption capacity of the starting LDH was due to the intrinsic base-like behavior, and was found to depend on the Mg/Al ratio. When contacted with polyol dendrimers in aqueous media, no intercalation took place. This was explained in terms of low exfoliation grade of LDH and hydrophobic character of the dendrimer molecules. The latter rather adsorb on the external surface of the LDH stacks for low dendrimer loadings, or aggregate into organic clusters for higher contents. Analyses through thermal programmed desorption of CO2 revealed that dendrimer incorporation advantageously attenuates the basicity strength of the starting LDH support, by lowering the desorption temperature. The OH groups of the organic moiety were found to display an amphoteric character, and act as the main adsorption sites. The weak interactions with CO2 facilitate easier release of the major part of adsorbed CO2 at temperature not exceeding 80–100 °C. On polyol organo-LDHs, the reversible CO2 retention was discussed herein in terms of acid–base interactions. This concept allows envisaging the capture of diverse pollutants and other greenhouse gases by modifying the chemical groups on the dendritic moiety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号