首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   12篇
力学   2篇
数学   4篇
物理学   26篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2018年   1篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
The weakly pinned single crystals of the hexagonal 2H-NbSe2 compound have emerged as prototypes for determining and characterizing the phase boundaries of the possible order-disorder transformations in the vortex matter. We present here a status report based on the ac and dc magnetization measurements of the peak effect phenomenon in three crystals of 2H-NbSe2, in which the critical current densities vary over two orders of magnitude. We sketch the generic vortex phase diagram of a weakly pinned superconductor, which also utilizes theoretical proposals. We also establish the connection between the metastability effects and pinning.  相似文献   
2.
3.
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.  相似文献   
4.
Thin film materials are widely used in the fabrication of semiconductor microelectronic devices. In thin film deposition, cleanliness of substrate surface have become critically important as over 50% of yield losses in integrated circuit fabrication are caused by microcontamination [1]. There are many wafer cleaning techniques. The most successful approach for silicon wafer cleaning technique is RCA clean [2]. But for glass substrate it is still not known which procedure of cleaning is the best. This paper provides an understanding of the right way of glass wafer cleaning method, with a focus towards identifying good bond strength. Two wafer cleaning techniques have been used for cleaning glass substrates in the context of laser micro-joining of dissimilar substrates. First cleaning procedure involves two steps, first cleaning in acetone solution and then in DI water solution. After each step dried with N2. Second cleaning procedure involves four steps, first cleaning with 1% Alconox solution, second in DI water, third in acetone solution and finally in a methanol solution and dried with N2 after each step. Deposition of Ti thin film on top of these two types of substrate using DC magnetron sputtering method also showed better adhesion of Ti film on glass for the second type of cleaning method. Scanning electron microscopy (SEM) analyses of the lap shear tested failed surfaces for these two kinds of samples revealed strong bond for samples prepared by second cleaning method compared to first cleaning method. Characterization of these two sets of samples using X-ray photoelectron spectroscopy (XPS) has shown excellent contamination removal for the second cleaning method. This modification is believed to be due to reduction of carbon contamination.  相似文献   
5.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   
6.
La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7°C SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature T>175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T<175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures (T>175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip scattering process.  相似文献   
7.
A projectile ion-recoil ion coincidence technique has been employed to study the multiple ionization and the charge transfer processes in collisions of 60–120 MeV Si q+ (q = 4−14) ions with neutral argon atoms. The relative contribution of different ionization channels, namely; direct ionization, electron capture and electron loss leading to the production of slow moving multiply charged argon recoil ions have been investigated. The data reported on the present collision system result from a direct measurement in the considered impact energy for the first time. The total ionization cross-sections for the recoil ions are shown to scale as q 1.7/E p 0.5 , where E p is the energy in MeV of the projectile and q its charge state. The recoil fractions for the cases of total- and direct ionizations are found to decrease with increasing recoil charge state j. The total ionization fractions of the recoils are seen to depend on q and to show the presence of a ‘shell-effect’ of the target. Further, the fractions are found to vary as 1/j 2 upto j = 8+. The average recoil charge state 〈j〉 increases slowly with q and with the number of lost or captured electrons from or into the projectile respectively. The projectile charge changing cross-sections σ qq are found to decrease with increasing q for loss ionization and to increase with q for direct-and capture ionization processes respectively. The physics behind various scaling rules that are found to follow our data for different ionization processes is reviewed and discussed.  相似文献   
8.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
9.
This work describes the synthesis of mixed oxide film of vanadium and ruthenium by pulsed deposition technique on multiwall carbon nanotubes and the decoration of gold nanoparticles on the mixed film. A ternary electrocatalyst has been developed for the electrochemical oxidation of hydrazine by combining two metal oxide mixtures with Au nanoparticles. Surface morphology and chemical composition of the electrode have been examined with SEM, EDX, HRTEM, EIS, and XRD. The peak current of hydrazine increased 9 times at the AuNPs/(VOx-RuOx)/CNT/GCE compared to the bare GCE, and the peak potential shifted to negative 848 mV. Linear sweep voltammetry (LSV) and amperometric techniques revealed that the AuNPs/(VOx-RuOx)/CNT/GCE displays linear concentration range 2.5–10000 µM (LSV) and the concentration range 0.03–100 µM (amperometry). The limit of detection (LOD) is 0.5 μM and 0.1 μM at (S/N = 3) for LSV and amperometric technique, respectively. The results obtained show a good RSD% of 2.1%–3.2% and reasonable recovery of 97%–108% of hydrazine detection.  相似文献   
10.
R Mohanta  AK Giri 《Pramana》2000,54(2):227-234
Using the heavy quark approximation, we have studied the nonleptonic decay mode Λ b →Λ c a 1. We have included nonfactorizable contributions as well as factorizable ones in our analysis. The estimated branching ratio for this process is (1.4±0.1)% and the asymmetry parameter α found to be −0.8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号