首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   41篇
物理学   3篇
  2021年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   8篇
  2002年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1983年   1篇
  1971年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
Dinuclear [(NiL)Gd(hfac)(2)(EtOH)](H(3)L = 1,1,1-tris(N-salicylideneaminomethyl)ethane, Hhfac = hexafluoroacetylacetone), trinuclear [(NiL)(2)Gd(NO(3))], and tetranuclear [(NiL)Gd(CH(3)CO(2))(2)(MeOH)](2) complexes, were prepared by treating [Ni(HL)] with [Gd(hfac)(3)(H(2)O)(2)], Gd(NO(3))(3).6H(2)O, and Gd(CH(3)CO(2))(3).4H(2)O, respectively, in the presence of Et(3)N. All the complexes show that ferromagnetic interactions occur between the Ni(II) and Gd(III) ions.  相似文献   
2.
The title compound, (NEt(4))[[Mn(salen)](2)Fe(CN)(6)] (1), was synthesized via a 1:1 reaction of [Mn(salen)(H(2)O)]ClO(4) with (NEt(4))(3)[Fe(CN)(6)] in a methanol/ethanol medium (NEt(4)(+) = tetraethylammonium cation, salen(2)(-) = N,N'-ethylenebis(salicylidene)iminate). The two-dimensional layered structure of 1 was revealed by X-ray crystallographic analysis: 1 crystallizes in monoclinic space group P2(1)/c with cell dimensions of a = 12.3660(8) A, b = 15.311(1) A, c = 12.918(1) A, beta = 110.971(4) degrees, Z = 2 and is isostructural to the previously synthesized compound, (NEt(4))[[Mn(5-Clsalen)](2)Fe(CN)(6)] (5-Clsalen(2-) = N,N'-ethylenebis(5-chlorosalicylidene)iminate; Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Inorg. Chem. 1997, 36, 670). The Mn ion is surrounded by an equatorial salen quadridentate ligand and two axial nitrogen atoms from the [Fe(CN)(6)](3-) unit, the four Fe[bond]CN groups of which coordinate to the Mn ions of [Mn(salen)](+) units, forming a two-dimensional network having [[bond]Mn[bond]NC[bond]Fe[bond]CN[bond]](4) cyclic repeating units. The network is spread over the bc-plane of the unit cell, and the layers are stacked along the a-axis. The countercation NEt(4)(+) is located between the layers. Compound 1 is a ferrimagnet with T(c) = 7.7 K and exhibits hysteresis with a remnant magnetization of 13.44 cm(3).mol(-1) (M/N mu(B) = 2.4) at zero field and a coercivity of 1000 Oe when the powder sample was measured at 1.9 K. Magnetic measurements of a direction-arranged single crystal were also carried out. The orientation of the crystallographic axes of a selected single crystal was determined by X-ray analysis, and magnetization was measured when an external field was applied in the a*, b, and c directions. The magnetization in the a* direction increased more easily than those in the b and c directions below the critical temperature. No hysteresis was observed only for the measurement in the a* direction, indicating the presence of strong structural anisotropy with potential anisotropy on Mn(III) ions.  相似文献   
3.
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3?:?3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3?:?3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and M?ssbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.  相似文献   
4.
Chronic toxicity of indium arsenide (InAs) and arsenic selenide (As2Se3) was studied in male Syrian golden hamsters which received InAs or As2Se3 particles, each containing a total dose of 7.5 mg of arsenic, by intratracheal instillations once a week for 15 weeks. As a control, hamsters were treated with the vehicle, phosphate buffer solution. During their total lifespan, the cumulative body weight gain of the hamsters in the InAs group was suppressed significantly compared with that in the control group, but not in the As2Se3 group when compared with that in the control group. However, the survival rate for the InAs group was significantly higher compared with the control group, but not for the As2Se3 group when compared with the control group. During the animals' total lifespan, one lung adenoma was seen in the 27 hamsters in the InAs group and one lung adenoma in the 23 hamsters in the control group. No tumors of the lung were observed in the As2Se3 group. Malignant tumors outside the lung appeared in four hamsters in the InAs group and in two in the As2Se3 group. No non-lung malignant tumours were seen in the control group. Total tumor incidence rates were 25.9% (7/27) in the InAs group, 10.3% (3/29) in the As2Se3 group and 8.7% (2/23) in the control group. There were therefore no significant differences in tumor incidence between the InAs or the As2Se3 group, and the control group. Regarding histopathological findings in the lung, incidence rates of proteinosis-like lesions, pneumonia, metaplastic ossification and emphysema were seen only in the InAs group, and alveolar or bronchiolar cell hyperplasia observed in both the InAs and the As2Se3 groups were at significantly higher rates than those in the control group. From these results, it was concluded that InAs and As2Se3 particles could induce pulmonary toxicity when instilled intratracheally into hamsters. A great deal of attention should be paid to the toxicity of both InAs and As2Se3, even though in this study the adverse health effects of As2Se3 appeared to be less than those of InAs.  相似文献   
5.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   
6.
Impairments resulting from stroke lead to persistent difficulties with walking. Subsequently, an improved walking ability is one of the highest priorities for people living with stroke. The degree to which gait can be restored after a stroke is related to both the initial impairment in walking ability and the severity of paresis of the lower extremities. However, there are some patients with severe motor paralysis and a markedly disrupted corticospinal tract who regain their gait function. Recently, several case reports have described the recovery of gait function in stroke patients with severe hemiplegia by providing alternate gait training. Multiple studies have demonstrated that gait training can induce “locomotor-like” coordinated muscle activity of paralyzed lower limbs in people with spinal cord injury. In the present review, we discuss the neural mechanisms of gait, and then we review case reports on the restoration of gait function in stroke patients with severe hemiplegia.  相似文献   
7.
A family of spin-crossover (SC) complexes, [Fe(II)H(3)L(Me)]Cl.X (X(-) = PF(6) (-), AsF(6) (-), SbF(6) (-), CF(3)SO(3) (-)), 1-4, has been synthesized, in which H(3)L(Me) denotes the hexadentate N(6) tripod-like ligand tris[2-{[(2-methylimidazol-4-yl)methylidene]amino}ethyl]amine, containing three imidazole groups, with a view to establishing the effect of the counter anion on the SC behavior. These complexes have been found to crystallize in the same monoclinic crystal system with similar cell dimensions. The general crystal structure consists of a two-dimensional (2D) extended network constructed by NH...Cl- hydrogen bonds between Cl- and the imidazole NH groups of three neighboring [Fe(II)H(3)L(Me)]2+ ions, while the anion X exists as an isolated counter anion and occupies the space between the 2D sheets. Magnetic susceptibilities and M?ssbauer spectra have revealed a variety of SC behaviors depending on the counter anion, including a one-step HS<==>(HS + LS)/2 (1, X = PF(6) (-)), a two-step HS<==>(HS + LS)/2<==>LS with a slow thermal relaxation (2, X = AsF(6) (-)), a gradual one-step HS<==>LS (3, X = SbF(6) (-)), and a steep one-step HS<==>LS with hysteresis (4, X = CF(3)SO(3) (-)). The complexes assume the space group P2(1)/n in the HS state, P2(1) in the HS + LS state, and P2(1)/n in the LS state. The Fe-N bond lengths and the N-Fe-N bond angles are indicative of the HS, HS + LS, and LS states. The molecular volumes, V, of the counter anions have been evaluated by quantum-chemical calculations as follows: 53.4 A(3) (BF(4) (-)), 54.4 A(3) (ClO(4) (-)), 73.0 A(3) (PF(6) (-)), 78.5 A(3) (AsF(6) (-)), 88.7 A(3) (SbF(6) (-)), and 86.9 A(3) (CF(3)SO(3) (-)). The size and shape of the counter anion affects the flexible 2D network structure constructed by the hydrogen bonds, leading to modifications of the SC behavior. These estimated relative sizes of the counter anions correlate well with the observed SC behaviors.  相似文献   
8.
A series of heterometal cyclic tetranuclear complexes [Cu(II)LM(II)(hfac)](2) (M(II) = Zn (1), Cu (2), Ni (3), Co (4), Fe(5), and Mn (6)) have been synthesized by the assembly reaction of K[CuL] and [M(II)(hfac)(2)(H(2)O)(2)] with a 1:1 mole ratio in methanol, where H(3)L = 1-(2-hydroxybenzamido)-2-((2-hydroxy-3-methoxybenzylidene)amino)ethane and Hhfac = hexafluoroacetylacetone. The crystal structures of 2, 4, and [Cu(II)LMn(II)(acac)](2) (6a) (Hacac = acetylacetone) were determined by single-crystal X-ray analyses. Each complex has a cyclic tetranuclear Cu(II)(2)M(II)(2) structure, in which the Cu(II) complex functions as a "bridging ligand complex", and the Cu(II) and M(II) ions are alternately arrayed. One side of the planar Cu(II) complex coordinates to one M(II) ion at the two phenoxo and the methoxy oxygen atoms, and the opposite side of the Cu(II) complex coordinates to another M(II) ion at the amido oxygen atom. The temperature-dependent magnetic susceptibilities revealed spin states of S(M) = 0, 1/2, 1, 3/2, 2, and 5/2 for the Zn(II), Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) ions, respectively. Satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a rectangular arrangement with two different g-factors for the Cu(II) and M(II) ions, two different isotropic magnetic exchange interactions, J(1) and J(2), between the Cu(II) and M(II) ions, and a zero-field splitting term for the M(II) ion. In all cases, the antiferromagnetic coupling constants were found for both exchange interactions suggesting nonzero spin ground states with S(T) = 2/S(M) - S(Cu)/, which were confirmed by the analysis of the field-dependent magnetization measurements.  相似文献   
9.
The [Fe(II)(H(3)L)](BF(4))(2).3H(2)O (1) complex was synthesized, where H(3)L (tris[[2-[(imidazole-4-yl)methylidene]amino]ethyl]amine) is a tripodal ligand obtained by condensation of tris(2-aminoethyl)amine and 4-formylimidazole (fim) in a 1:3 molar ratio. Starting from 1, a series of complexes, [Fe(II)(H(1.5)L)](BF(4))(0.5) (2) (=[Fe(II)(H(3)L)][Fe(II)(L)]BF(4)), [Fe(H(1.5)L)]BF(4) (3) (=[Fe(II)(H(3)L)][Fe(III)(L)](BF(4))(2)), [Fe(III)(H(3)L)](BF(4))(3).fim.H(2)O (4), and [Fe(III)(L)].2.5H(2)O (5), has been synthesized and characterized. The single-crystal X-ray structure of each complex has been determined. The Fe(II) compound, 2, and a mixed valence Fe(II)-Fe(III) compound, 3, involve formally hemi-deprotonated ligands, H(1.5)L. The structure of 3 consists of a homochiral two-dimensional assembled sheet, arising from the intermolecular hydrogen bonds between [Fe(II)(H(3)L)](2+) and [Fe(III)(L)](0) (3). All but 5 exhibit spin crossover between low-spin (LS) and high-spin (HS) states. This is a rare case where both Fe(II) and Fe(III) complexes containing the same ligand exhibit spin-crossover behavior. Magnetic susceptibility and M?ssbauer studies showed that 3 has three accessible electronic states: LS Fe(II)-LS Fe(III), HS Fe(II)-LS Fe(III), and HS Fe(II)-HS Fe(III). Compounds 1-3 show the light-induced excited spin-state trapping effect at the Fe(II) sites upon irradiation with green light. The solution magnetic properties, electronic spectra, and electrochemical properties of 1, 4, and 5 were also studied.  相似文献   
10.
Intermolecular anionic rearrangement of the trimethylgermyl group in trimethylgermylacetonitrile, bis(trimethylgermyl)acetonitrile, and tris(trimethylgermyl)acetonitrile is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号