首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   1篇
物理学   21篇
  2011年   2篇
  2006年   1篇
  2000年   4篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 187 毫秒
1.
Characterization of autocatalytic decomposition reactions is important for the safe handling and storage of energetic materials. Isothermal differential scanning calorimetry (DSC) has been widely used to detect autocatalytic decomposition of energetic materials. However, isothermal DSC tests are time consuming and the choice of experimental temperature is crucial. This paper shows that an automatic pressure tracking calorimeter (APTAC) can be a reliable and efficient screening tool for the identification of autocatalytic decomposition behavior of energetic materials. Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family. High concentrations of HAN are used as liquid propellants, and low concentrations of HAN are used primarily in the nuclear industry for decontamination of equipment. Because of its instability and autocatalytic decomposition behavior, HAN has been involved in several incidents.  相似文献   
2.
3.
4.
5.
Several magnetic and optical processes contribute to the magneto-optical response of nickel thin films after excitation by a femtosecond laser pulse. We achieved a first complete identification by explicitly measuring the time-resolved Kerr ellipticity and rotation, as well as its temperature and magnetic field dependence in epitaxially grown (111) and (001) oriented Cu/Ni/Cu wedges. The first hundreds of femtoseconds the response is dominated by state filling effects. The true demagnetization takes approximately 0.5-1 ps. At the longer (sub-ns) time scales the spins are found to precess in their anisotropy field. Simple and transparent models are introduced to substantiate our interpretation.  相似文献   
6.
7.
8.
Diffusion tensor imaging (DTI) and advanced related methods such as diffusion spectrum and kurtosis imaging are limited by low signal-to-noise ratio (SNR) at conventional field strengths. DTI at 7 T can provide increased SNR; however, B0 and B1 inhomogeneity and shorter T2? still pose formidable challenges. The purpose of this study was to quantify and compare SNR at 7 and 3 T for different parallel imaging reduction factors, R, and TE, and to evaluate SNRs influences on fractional anisotropy (FA) and apparent diffusion coefficient (ADC). We found that R>4 at 7 T and R≥2 at 3 T were needed to reduce geometric distortions due to B0 inhomogeneity. For these R at 7 T, SNR was 70-90 for b=0 s/mm2 and 22-28 for b=1000s/mm2 in central brain regions. SNR was lower at 3 T (40 for b=0 s/mm2 and 15 for b=1000 s/mm2) and in lateral brain regions at 7 T due to B1 inhomogeneity. FA and ADC did not change with MRI field strength, SENSE factor or TE in the tested range. However, the coefficient of variation for FA increased for SNR <15 and for SNR <10 in ADC, consistent with published theoretical studies. Our study demonstrates that 7 T is advantageous for DTI and lays the groundwork for further development. Foremost, future work should further address challenges with B0 and B1 inhomogeneity to take full advantage for the increased SNR at 7 T.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号