首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   3篇
晶体学   1篇
物理学   5篇
  2021年   2篇
  2020年   1篇
  2014年   3篇
  2012年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure. Since it was anticipated that losartan reaches the receptor site via membrane diffusion, the impact of losartan on model membranes has been investigated by small angle X-ray scattering. For this purpose 2-20 mol% losartan was incorporated into dimyristoyl-phosphatidylcholine (DMPC) and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers and into their binary mixtures with cholesterol in the concentration range of 0 to 40 mol%. Effects of losartan on single component bilayers are alike. Partitioning of losartan into the membranes confers a negative charge to the lipid bilayers that causes the formation of unilamellar vesicles and a reduction of the bilayer thickness by 3-4%. Analysis of the structural data resulted in an estimate for the partial area of losartan, A(Los) ≈ 40 ?(2). In the presence of cholesterol, differences between the effects of losartan on POPC and DMPC are striking. Membrane condensation by cholesterol is retarded by losartan in POPC. This contrasts with DMPC, where an increase of the cholesterol content shifts the partitioning equilibrium of losartan towards the aqueous phase, such that losartan gets depleted from the bilayers from 20 mol% cholesterol onwards. This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan's action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts.  相似文献   
2.
Polymer systems based on polymer waste offer promising way to increase recycling in the society. Since fillers play a major role in determining the properties and behavior of polymer composites, recycled polymers can also be combined with fillers to enhance the stiffness and thermal stability. In this study, blends of recycled polyethylene and recycled polypropylene with mica and glass fiber were prepared by melt blending technique. The effect of the particle loading, filler type, and filler–matrix interaction on thermal degradation and thermal transition of processed systems were investigated. Thermogravimetric analysis, differential thermogravimetric analysis, and differential scanning calorimetry were used in this investigation. Comparative analysis shows that both fillers produced different effects on thermal properties of the processed systems. These results were confirmed by calculating the activation energy for thermal degradation and thermal transition using Kissinger and Flynn–Wall expressions.  相似文献   
3.
Our intention is to provide easy methods for estimating entropy and chemical potentials for gas phase reactions. Clausius’ virial theorem set a basis for relating kinetic energy in a body of independent material particles to its potential energy, pointing to their complementary role with respect to the second law of maximum entropy. Based on this partitioning of thermal energy as sensible heat and also as a latent heat or field potential energy, in action mechanics we express the entropy of ideal gases as a capacity factor for enthalpy plus the configurational work to sustain the relative translational, rotational, and vibrational action. This yields algorithms for estimating chemical reaction rates and positions of equilibrium. All properties of state including entropy, work potential as Helmholtz and Gibbs energies, and activated transition state reaction rates can be estimated, using easily accessible molecular properties, such as atomic weights, bond lengths, moments of inertia, and vibrational frequencies. We conclude that the large molecular size of many enzymes may catalyze reaction rates because of their large radial inertia as colloidal particles, maximising action states by impulsive collisions. Understanding how Clausius’ virial theorem justifies partitioning between thermal and statistical properties of entropy, yielding a more complete view of the second law’s evolutionary nature and the principle of maximum entropy. The ease of performing these operations is illustrated with three important chemical gas phase reactions: the reversible dissociation of hydrogen molecules, lysis of water to hydrogen and oxygen, and the reversible formation of ammonia from nitrogen and hydrogen. Employing the ergal also introduced by Clausius to define the reversible internal work overcoming molecular interactions plus the configurational work of change in Gibbs energy, often neglected; this may provide a practical guide for managing industrial processes and risk in climate change at the global scale. The concepts developed should also have value as novel methods for the instruction of senior students.  相似文献   
4.
ABSTRACT

The first generation of installed optical cables in Eastern Europe has been in use for more than 20 years. This paper analyzes the change of optical fibers from the aspect of aging under the influence of transmitted signals and the aspect of parameter degradation during exploration. The paper provides the answer for how to repair the increased attenuation at 1310 nm. We also proposed the method of solution NG PON access for small remote villages that are situated along the analyzed route.  相似文献   
5.
A thermoplastic polymer solution was inkjet printed in a pre‐defined hexagonal pattern onto carbon fibre reinforced epoxy resin (CFRP), leading to a significant increase in strength, stiffness and toughness of the final aerospace grade compo‐site system. The approach consisted of depositing low‐viscosity polymer microdroplets having chemically and me‐chanically comparable properties to epoxy polymer, onto CFRP before curing and solidification. The microdroplets remained arrested between composite plies without direct contact with the neighbouring microdroplets ensuring preservation of the structural integrity of the new composite system after curing. The key to achieving this synergistic effect was in appropriately selected additive materials; however, the novel aspects also included the method itself, which enabled an accurate crack arrest mechanism.

  相似文献   

6.
The approximation of a well mixed reactor is prevalent when it comes to the modeling of a crystallization process. Since temperature, concentration, and mass content vary due to inhomogeneous mixing, this approximation is a very loose one. The continuously operated seeded tubular crystallizer system developed in our group overcomes obstacles like a slow response to changes in the outer parameters and inhomogeneous mixing. Therefore the applicable well mixed assumption facilitates detailed modeling of the crystallization process by means of population balance equations (PBE) coupled with mass and energy balances. Modeled results were validated by means of experiments. The amount of aggregation events during the crystallization could be quantified and it was proven that the growth of seeded crystals is almost exclusively responsible for solid mass uptake if the reactor is operated appropriately. The performed sensitivity analysis exposed which process settings should be maintained most accurately to avoid fluctuations in the product crystals’ quality attributes and to limit undesired nucleation events.  相似文献   
7.
Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger, limiting his legacy. An action revision of the Carnot cycle can correct this, showing that the heat flow powering external mechanical work is compensated internally with configurational changes in the thermodynamic or Gibbs potential of the working fluid, differing in each stage of the cycle quantified by Carnot as caloric. Action (@) is a property of state having the same physical dimensions as angular momentum (mrv = mr2ω). However, this property is scalar rather than vectorial, including a dimensionless phase angle (@ = mr2ωδφ). We have recently confirmed with atmospheric gases that their entropy is a logarithmic function of the relative vibrational, rotational, and translational action ratios with Planck’s quantum of action ħ. The Carnot principle shows that the maximum rate of work (puissance motrice) possible from the reversible cycle is controlled by the difference in temperature of the hot source and the cold sink: the colder the better. This temperature difference between the source and the sink also controls the isothermal variations of the Gibbs potential of the working fluid, which Carnot identified as reversible temperature-dependent but unequal caloric exchanges. Importantly, the engine’s inertia ensures that heat from work performed adiabatically in the expansion phase is all restored to the working fluid during the adiabatic recompression, less the net work performed. This allows both the energy and the thermodynamic potential to return to the same values at the beginning of each cycle, which is a point strongly emphasized by Carnot. Our action revision equates Carnot’s calorique, or the non-sensible heat later described by Clausius as ‘work-heat’, exclusively to negative Gibbs energy (−G) or quantum field energy. This action field complements the sensible energy or vis-viva heat as molecular kinetic motion, and its recognition should have significance for designing more efficient heat engines or better understanding of the heat engine powering the Earth’s climates.  相似文献   
8.
Three novel experimental techniques were employed in this work in order to investigate the influence of the interphase region in polymer–glass composites on the bulk material properties: (i) the microdroplet test is a single fibre test designed to characterize the fibre–matrix bond (interface region) and to determine the interfacial shear stress in composite material; (ii) the nano-indentation test, a novel nano-hardness technique with ability to produce an indent as low as a few nanometres was employed in order to measure nano-hardness of the fibre–matrix interphase region; and (iii) the nano-scratch test, used in conjunction with the nano-indentation test for measurement of the interphase region width. The microdroplet test (MDT) has been used to characterize the interfacial bond in fibrous composite materials. The specimen consists of a fibre with a drop of cured resin pulled while the drop is being supported by a platinum disc with a hole. A properly tested specimen fails at the droplet’s tip–fibre interface, revealing the ultimate interfacial shear strength. In this study, finite element analysis (FEA) of the MDT has been focused toward simulation of the fibre–matrix interphase region. The influence of several functional variations of the material properties across the interphase layer on the stress distribution at the droplet’s tip was analysed. The results showed that the variation of the interphase properties significantly affects the stress distribution at the fibre–droplet interface, and, therefore, the stress redistribution to composite material. These results led to further experimental investigation of the interphase region, in order to obtain the material properties essential for the interfacial stress analysis. The interphase region in dry and water aged polymer–glass composite materials was investigated by means of the nano-indentation and the nano-scratch techniques. The nano-indentation test involved indentation as small as 30 nm in depth, produced along a 14 μm path between the fibre and the matrix. The distinct properties of the interphase region were revealed by 2–3 indents in dry materials and up to 15 indents in water aged, degraded materials. These results indicated interdiffusion in water aged interphase regions. The nano-scratch test involves moving a sample while being in contact with a diamond tip. The nano-scratch test, used in conjunction with the nano-indentation test, accurately measured the width of the interphase region. The results showed that the harder interphase region dissolved into the softer interphase region (both regions being harder/stronger than the matrix) expanding its width after aging in water.  相似文献   
9.
We report a new approach for microfluidic optical bioanalysis that is based on the electrically driven assembly of bio-components on a transparent sidewall and the optical detection of the assembled components using planar waveguides. This allows localized electrical signals for bio-assembly and optical signals for bio-detection that can easily be applied in MEMS systems. We demonstrate a BioMEMS design incorporating this scheme and its output signal when using fluorescent detection.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号