首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2021年   1篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Stark absorption spectroscopy was applied to 6-hydroxyquinoline (6-HQ) doped in polymer films of poly(methyl methacrylate) (PMMA) and poly(vinyl alcohol) (PVA) at temperatures of 50-300 K. The electroabsorption (E-A) spectrum of 6-HQ markedly depends on temperature in a PMMA film. The polarization dependence as well as the temperature dependence of the E-A spectra reveals that 6-HQ is oriented along the direction of the applied electric field at room temperature in a PMMA film. As the temperature becomes lower, the field-induced orientation of 6-HQ is restricted, and only the Stark shift induced by a change in electric dipole moment and in molecular polarizability is observed. On the other hand, E-A spectra of 6-HQ doped in a PVA film are essentially independent of temperature, suggesting that 6-HQ is not oriented along the electric field even at room temperature in PVA. These results show that the molecular motion of 6-HQ in a polymer film is very sensitive to the microenvironment of the surrounding matrix.  相似文献   
2.
Fluorescence characteristics of 6-hydroxyquinoline (6-HQ) have been studied at room temperature in Nafion(R) film by steady state and nano-second time-resolved fluorescence spectroscopy. The fluorescence spectrum exhibits single emission band corresponding to the protonated form of 6-HQ in this matrix. However, the decay fits with two or three exponential functions depending on the emission wavelength monitored. At blue edge of the emission, the decay fits to three-exponential function, whereas at longer wavelengths, the decay fits to bi-exponential function. Two tentative mechanisms have been proposed to explain the experimental data, viz. a closely lying charge transfer state (CT) or an excited state proton transfer (ESPT) process. The photophysical parameters appear to be sensitive to the change in microstructure due to swelling of the membrane by the solvents.  相似文献   
3.
The photophysical behavior of 7-hydroxyquinoline (7HQ) is studied in four polymer matrices, viz. polymethyl methacrylate (PMMA), cellulose acetate (CA), polyvinyl alcohol (PVA) and Nafion-117, at ambient temperature using both steady state and time-domain measurements. The study reveals both ground as well as excited state tautomerization in the case of PVA. In PMMA and CA, the intermolecular hydrogen bond to the host polymer results in proton transfer. Edge excitation red shift (EERS) and excitation and emission wavelength dependent decays are observed for normal emission in PMMA and CA matrices. These results are attributed to the trapping of a normal molecule in different geometries. In Nafion, the results show the presence of 7HQ cationic species trapped in the polymer.  相似文献   
4.
A hydrogen-bonded network formed between 6-hydroxyquinoline (6-HQ) and acetic acid (AcOH) has been characterized using a time-resolved fluorescence technique. In the bridged hydrogen-bonded complex of cis-6-HQ and AcOH, an excited-state reaction proceeds via proton transfer along the hydrogen bond, resulting in a keto-tautomer (within approximately 200 ps) that exhibits large Stokes-shifted fluorescence. The unbridged complex also undergoes excited-state proton transfer, but the Stokes shift is rather smaller.  相似文献   
5.
Journal of Fluorescence - A computational study based on the DFT/TD-DFT approach was performed to explore various properties of 6-aminoquinoline (6AQ). The geometrical parameters, molecular...  相似文献   
6.
Spectroscopic studies on excited-state proton transfer (ESPT) of hydroxyquinoline (6HQ) have been performed in a previous paper. And a hydrogen-bonded network formed between 6HQ and acetic acid (AcOH) in nonpolar solvents has been characterized. In this work, a time-dependent density functional theory (TDDFT) method at the def-TZVP/B3LYP level was employed to investigate the excited-state proton transfer via hydrogen-bonded AcOH wire for 6HQ. A hydrogen-bonded wire containing three AcOH molecules at least for connecting the phenolic and quinolinic -N- group in 6HQ has been confirmed. The excited-state proton transfer via a hydrogen-bonded wire could result in a keto tautomer of 6HQ and lead to a large Stokes shift in the emission spectra. According to the results of calculated potential energy (PE) curves along different coordinates, a stepwise excited-state proton transfer has been proposed with two steps: first, an anionic hydrogen-bonded wire is generated by the protonation of -N- group in 6HQ upon excitation to the S(1) state, which increases the proton-capture ability of the AcOH wire; then, the proton of the phenolic group transfers via the anionic hydrogen-bonded wire, by an overall "concerted" process. Additionally, the formation of the anionic hydrogen-bonded wire as a preliminary step has been confirmed by the hydrogen-bonded parameters analysis of the ESPT process of 6HQ in several protic solvents. Therefore, the formation of anionic hydrogen-bonded wire due to the protonation of the -N- group is essential to strengthen the hydrogen bonding acceptance ability and capture the phenolic proton in the 6HQ chromophore.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号