首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
化学   34篇
力学   1篇
数学   6篇
物理学   29篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   1篇
  2005年   6篇
  2004年   6篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
1.
Precise characterization of noncollinear optical parametric amplifier idler pulses that have bandwidths of more than an octave with a center wavelength at 990 nm was demonstrated. The method employed was cross-correlation frequency-resolved optical gating with broadband sum-frequency mixing to take advantage of the idler's angular dispersion. Compression to near the transform limit was achieved to produce quasi-monocyclic near-infrared pulses by use of a deformable membrane mirror.  相似文献   
2.
The present study aims to derive an analytical model on bed-load layer thickness in an open channel turbulent flow carrying sediments. Determination of the thickness of the bed-load layer is of utmost importance in the study of bed-load transport as it is required to determine the bed-load transport rate, as well as in the study of suspended load transport as it acts as reference level for the particles in suspension. Apart from the several deterministic approaches available in the literature, the work adopts probabilistic approach based on entropy theory to determine the bed-load layer thickness. The concept of entropy theory developed by Shannon is used and the method of Lagrange multipliers is employed for the maximization of entropy function to find the least biased probability distribution. To calculate the Lagrange multipliers, present in the probabilistic model of dimensionless bed-load layer thickness, two different methodologies are presented. The model of bed-load layer thickness is a function of dimensionless shear stress and also depends on three other parameters which are found to be functions of specific gravity of sediment particle and dimensionless particle diameter from a non-linear regression analysis. The proposed model is validated with wide sets of experimental data available in literature and a good agreement is achieved. Apart from comparison with data, the model is also compared with existing deterministic model and computation of relative percentage error proves the better efficiency of the present model.  相似文献   
3.
Ultrafast photoinduced bimolecular electron transfer (ET) dynamics between 7-aminocoumarin derivatives and N,N-dimethylaniline (DMAN) has been studied in neutral (TX100), cationic (DTAB) and anionic (SDS) micellar media. A very fast decay time constant (tau(fast)) shorter than approximately 10 ps has been observed for the coumarins in the presence of DMAN in all of the three micellar media. In this time scale, reactants in the micellar phase undergo ET interactions without involving diffusion or reorientation of the reactants and thus can be envisaged as equivalent to nondiffusive bimolecular ET reaction. The fastest ET rates estimated as the inverse of the shortest lifetime components of the fluorescence decay (k(et) congruent with tau(fast)(-1)) nicely follow the predicted Marcus inversion behavior with reaction exergonicity (-DeltaG degrees), irrespective of the nature of micelles considered. Onset of inversion in ET rates occur at approximately 0.61 eV lower exergonicity in SDS and TX100 micelles compared with that in DTAB micelle and are rationalized following two-dimensional ET (2DET) theory. These differences suggest the possibility of tuning Marcus inversion by proper selection of micelles. Interestingly, ET rates (k'(et)) obtained from the conventional Stern-Volmer analysis of the relatively longer time constants of the fluorescence decays also exhibit similar Marcus correlation with DeltaG degrees, showing clear inversion behavior. Fitting of Marcus correlation curves for k(et) and k'(et) indicate two largely different values for the electronic coupling parameters. In micellar media, as the interacting donor-acceptor molecules are on an average expected to be separated by an intervening surfactant chain and the reorientation rate of the reactants is quite slow, it is predicted that the ultrafast ET (k(et)) component arises because of the surfactant separated donor-acceptor pairs that are orientated perfectly to give the maximum electronic coupling. The slower ET (k'(et)) is predicted to arise because of those pairs where the donor-acceptor orientations are not very suitable but good enough to give a sizable electronic coupling.  相似文献   
4.
A method of all optical frequency encoded single bit memory unit is proposed and described using difference frequency generation only in non linear materials. The unit can store a single bit in frequency encoded format and thus maintains the same state when input is withdrawn. To change the state of the information of the memory unit the input should be changed. The proposed memory unit employs difference frequency generation for its operation and is very fast, the speed of operation is limited by the difference frequency generation process.  相似文献   
5.
In a simple wet chemical process, purified single-wall carbon nanotubes (SWCNTs) are treated with triphenylphosphine (Ph3P) at room temperature. The functionalized material is characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. HRTEM micrograph clearly reveals that triphenylphosphine nanocrystals of nearly uniform size are attached to the surfaces of SWCNTs. The hybrid structure shows remarkable green luminescence with peak emission at around 500 nm, under UV excitation. The photoluminescence may be attributed to charge transfer from the electron-donating phosphorous atoms to the carbon nanotubes.  相似文献   
6.
Dynamic fluorescence Stokes shift measurements of coumarin 153 (C153) have been carried out to study the influence of ionic surfactants (sodium dodecyl sulfate, SDS and hexadecyltrimethylammonium chloride, CTAC) on the hydration behavior of aqueous poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)20 (P123) block copolymer micelles. Increase in SDS or CTAC concentration at a fixed P123 concentration induces the steady-state emission spectra of C153 to shift gradually toward lower energy. This is attributed to an increase in polarity (due to enhanced hydration) experienced by the probe as a consequence of incorporation of ionic head groups in the Corona region. The observed dynamic fluorescence Stokes shift value decreases more in mixed micellar systems than in pure copolymer micelles and the trends are quite similar in the presence of SDS and CTAC. The spectral shift correlation functions were observed to be nonexponential in nature. Critical analysis of the spectral shift correlation function indicates a fast solvation component (<0.2 ns) in P123 micelles, which was absent in the presence of ionic surfactants. Due to increased hydration in the presence of ionic surfactants, the initial fast solvation event was elusive in mixed copolymer-surfactant systems, reflecting the absence of faster solvation component and reduced observed Stokes shift in mixed systems. It has been argued that in the low surfactant concentration region, increase in hydration with the incorporation of ionic head groups in the Corona region is mainly due to increase in mechanically trapped water content. However, at higher surfactant concentrations, bound water content dominates and leads to slower solvation dynamics. The present results also indicate that though CTAC alters the Corona hydration more efficiently than SDS, the overall influence of ionic surfactants on the Corona hydration is grossly similar irrespective of the cationic or anionic nature of the surfactants. Interaction of SDS and CTAC with poly(ethylene oxide)(100)-poly(propylene oxide)(70)-poly(ethylene oxide)(100) (F127) block copolymer micelles has also been studied to comprehend the effect of copolymer composition. The overall trends in dynamic fluorescence Stokes shift and solvation times are similar in both the copolymer micelles.  相似文献   
7.
8.
The effect of different hydrotropic salts on the microenvironment at the anionic head group region of sodium dodecyl sulphate (SDS) micelle has been studied through time-resolved fluorescence anisotropy measurements of a solubilized probe, coumarin-153 (C153). The organic cations of the hydrotropic salts used in this study, i.e. aniline hydrochloride (AHC) and o-, m- and p-toluidine hydrochlorides (OTHC, MTHC and PTHC, respectively), differ in their charge to size ratio and hydrophobicity. Present study utilizes the sensitivity of the fluorescence technique to understand the changes in the micropolarity and microviscosity experienced by the fluorescent probe, C153, solubilized in the micellar Stern layer, on addition of different hydrotropic salts. Significant changes are observed in the rotational relaxation dynamics of the probe with increasing concentration of the salts. The changes in the rotational relaxation dynamics clearly reflect the sphere to rod transition in the SDS micelles and correspond nicely with the reported results from dynamic light scattering measurements. The growth behavior of SDS micelles is found to be sensitive to the hydrophobicity of the organic cations. The charge to size ratio of the organic cations also indicated to play a role in inducing the sphere to rod transition in the SDS micelles. The interesting observation made from this study is that the sphere to rod transition of SDS micelles is largely facilitated by the presence of the hydrotropic salts and such a transition is successfully indicated by the simple fluorescence anisotropy measurements of a probe in the micelle carried out in the presence of different hydrotropic salts.  相似文献   
9.
Two-photon absorption(2PA) in zinc sulphide(ZnS) and Mn2+-doped ZnS quantum dots is reported by the z-scan technique,with nanosecond pulsed laser radiation at 355 nm.The observed values of the 2PA cross section of all the samples are 105 times larger than that of bulk ZnS.  相似文献   
10.
The reactivity between two charged molecules and the activity of charged biomolecules are mainly governed by the principle of electrostatic interaction, i.e., like charges repel and opposite charges attract. In the present study it is shown that the principle of electrostatic interaction is violated in the nano-confined biomimetic environment. Thus a positively charged molecule shows more preference to a positively charged surface compared to a negatively charged surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号