首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   0篇
力学   1篇
数学   9篇
物理学   130篇
  2021年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   11篇
  2010年   5篇
  2009年   14篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1988年   3篇
  1986年   1篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
1.
2.
We study the discrete nonlinear Schrödinger lattice model with the onsite nonlinearity of the general form, |u|2σu. We systematically verify the conditions for the existence and stability of discrete solitons in the one-dimensional version of the model predicted by means of the variational approximation (VA), and demonstrate the following: monostability of fundamental solitons (FSs) in the case of the weak nonlinearity, 2σ+1<3.68; bistability, in a finite range of values of the soliton’s power, for 3.68<2σ+1<5; and the presence of a threshold (minimum norm of the FS), for 2σ+1≥5. We also perform systematic numerical simulations to study higher-order solitons in the same general model, i.e., bound states of the FSs. While all in-phase bound states are unstable, stability regions are identified for antisymmetric double solitons and their triple counterparts. These numerical findings are supplemented by an analytical treatment of the stability problem, which allows quantitively accurate predictions for the stability features of such multipulses. When these waveforms are found to be unstable, we show, by means of direct simulations, that they self-trap into a persistent lattice breather, or relax into a stable FS, or sometimes decay completely.  相似文献   
3.
We report the results of a systematic analysis of the existence and stability of spatiotemporal (two-dimensional) solitons (STSs) in the model of a planar waveguide with the intrinsic χ(2) nonlinearity. Fundamental obstacles to the creation of STSs under physically realistic conditions are the normal sign of the group-velocity dispersion (GVD) at the second harmonic (SH), and the significant group-velocity mismatch (GVM) between the SH and fundamental-frequency (FF) components. To construct STS solutions in a numerical form, we adjust the iterative method, which was recently used for finding temporal (one-dimensional) χ(2) solitons in a similar setting. We identify effective existence borders for the STSs, within which the energy loss to the generation of extended “tails” in the SH component (due to the normal sign of the GVD) is negligible. It is demonstrated that the existence region can be made much broader by means of the GVD-management and GVM-management techniques. We also explore interactions between the STSs, and find robust two-soliton bound states, with a moderate separation in the longitudinal (temporal) direction. Head-on collisions between the STSs are always destructive.  相似文献   
4.
The existence of "dispersion-managed solitons," i.e., stable pulsating solitary-wave solutions to the nonlinear Schrodinger equation with periodically modulated and sign-variable dispersion is now well known in nonlinear optics. Our purpose here is to investigate whether similar structures exist for other well-known nonlinear wave models. Hence, here we consider as a basic model the variable-coefficient Korteweg-de Vries equation; this has the form of a Korteweg-de Vries equation with a periodically varying third-order dispersion coefficient, that can take both positive and negative values. More generally, this model may be extended to include fifth-order dispersion. Such models may describe, for instance, periodically modulated waveguides for long gravity-capillary waves. We develop an analytical approximation for solitary waves in the weakly nonlinear case, from which it is possible to obtain a reduction to a relatively simple integral equation, which is readily solved numerically. Then, we describe some systematic direct simulations of the full equation, which use the soliton shape produced by the integral equation as an initial condition. These simulations reveal regions of stable and unstable pulsating solitary waves in the corresponding parametric space. Finally, we consider the effects of fifth-order dispersion. (c) 2002 American Institute of Physics.  相似文献   
5.
Malomed B  Peng GD  Chu PL 《Optics letters》1999,24(16):1100-1102
We propose a wavelength-division multiplexing system in which transmission of solitons is stabilized by fixed- or sliding-frequency notch filters (a soliton rail), providing channel isolation. We demonstrate analytically and numerically that a soliton trapped in a channel between two notches is very robust. We also predict an optimum ratio between the channel separation and the soliton's spectral width. The effects of interchannel collisions are considered, and it is demonstrated that these effects can be largely eliminated by notch filters, which require a compensatory gain that is comparable with the basic gain balancing the fiber loss.  相似文献   
6.
The paper is devoted to the study of one-dimensional and two-dimensional transient wave regimes in nonlinear systems of the reaction-diffusion type. In a one-dimensional case the process of collision of two travelling waves is considered. It is demonstrated that in the case of a nondispersive nonlinear system, where a steady regime of the collision is not possible, the process can be described by means of an approximation which is nonuniform in a spatial coordinate. The collision results, in a general case, in formation of an oscillatory shock wave moving with varying velocity. In a two-dimensional situation the transition of a rotating vortex into a rotating spiral wave in the case of dispersive systems and the inverse transition in the case of nondispersive systems are considered.  相似文献   
7.
We investigate the stability properties of breather solitons in a three-dimensional Bose-Einstein condensate with Feshbach resonance management of the scattering length and confined only by a one-dimensional optical lattice. We compare regions of stability in parameter space obtained from a fully 3D analysis with those from a quasi-two-dimensional treatment. For moderate confinement we discover a new island of stability in the 3D case, not present in the quasi-2D treatment. Stable solutions from this region have non-trivial dynamics in the lattice direction; hence, they describe fully 3D breather solitons. We demonstrate these solutions in direct numerical simulations and outline a possible way of creating robust 3D solitons in experiments in a Bose-Einstein condensate in a one-dimensional lattice. We point out other possible applications.  相似文献   
8.
We report the first observation of stationary necklacelike solitons. Such necklace structures were realized when a high-order vortex beam was launched appropriately into a two-dimensional optically induced photonic lattice. Our theoretical results obtained with continuous and discrete models show that the necklace solitons resulting from a charge-4 vortex have a pi phase difference between adjacent "pearls" and are formed in an octagon shape. Their stability region is identified.  相似文献   
9.
In a benchmark dynamical-lattice model in three dimensions, the discrete nonlinear Schr?dinger equation, we find discrete vortex solitons with various values of the topological charge S. Stability regions for the vortices with S=0,1,3 are investigated. The S=2 vortex is unstable and may spontaneously rearranging into a stable one with S=3. In a two-component extension of the model, we find a novel class of stable structures, consisting of vortices in the different components, perpendicularly oriented to each other. Self-localized states of the proposed types can be observed experimentally in Bose-Einstein condensates trapped in optical lattices and in photonic crystals built of microresonators.  相似文献   
10.
An experimentally realizable scheme of periodic sign-changing modulation of the scattering length is proposed for Bose-Einstein condensates similar to dispersion-management schemes in fiber optics. Because of controlling the scattering length via the Feshbach resonance, the scheme is named Feshbach-resonance management. The modulational-instability analysis of the quasiuniform condensate driven by this scheme leads to an analog of the Kronig-Penney model. The ensuing stable localized structures are found. These include breathers, which oscillate between the Thomas-Fermi and Gaussian configuration, or may be similar to the 2-soliton state of the nonlinear Schr?dinger equation, and a nearly static state ("odd soliton") with a nested dark soliton. An overall phase diagram for breathers is constructed, and full stability of the odd solitons is numerically established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号