首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
物理学   20篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
排序方式: 共有20条查询结果,搜索用时 46 毫秒
1.
Volkov  M. V.  Grigoriev  V. A.  Lunkov  A. A.  Petnikov  V. G. 《Acoustical Physics》2019,65(3):269-278
Acoustical Physics - Numerical simulation is applied to analyze the possibilities of using vertical receiving arrays covering the entire waveguide for underwater acoustic communication on the...  相似文献   
2.
Grigoriev  V. A.  Kucher  K. M.  Lunkov  A. A.  Makarov  M. M.  Petnikov  V. G. 《Acoustical Physics》2020,66(5):508-516

A technique for estimating the effective acoustic parameters of the bottom in shallow water areas under ice cover has been developed. The methodology compares the experimental and simulated dependences of the sound field amplitude on depth at a distance from the source about an order of magnitude greater than the depth of the water area. The effective parameters are the values of the sound speed in the bottom, density, and attenuation coefficient of acoustic waves, which provide maximum agreement with experimental data in the calculations. The methodology was tested in a field experiment on Lake Baikal and can be recommended for developing autonomous acoustic monitoring systems.

  相似文献   
3.
Low frequency (100–500 Hz) sound propagation loss on the US Atlantic continental shelf and in the Barents Sea in the presence of stochastic surface waves, and for the US Atlantic shelf also in the presence of internal waves, is studied for the range of up to 150 km by means of numerical simulations. Qualitative difference between sound propagation loss behavior on the US Atlantic shelf and in the Barents Sea is demonstrated for summertime conditions even without random inhomogeneities. It is shown that whereas internal waves have a weak effect on propagation loss, surface waves result in its considerable increase in both areas under wintertime conditions with a wind speed of more than 9 m/s.  相似文献   
4.
A numerical experiment is carried out to study the focusing of a low-frequency (100–300 Hz) sound field in a shallow-water acoustic waveguide typical of an oceanic shelf. Focusing with the use of time reversal of broadband acoustic signals, which is called time reversal mirror (TRM) of waves, is considered along with focusing by phase conjugation (PC) of a monochromatic sound field. It is demonstrated that, in the case of focusing by the TRM method in the waveguide of interest, it is sufficient to have a single source-receiving element. The use of a vertical array improves the quality of focusing. The quality achieved in the latter case proves to be approximately the same as that achieved in the case of focusing by phase conjugation of a monochromatic field at a frequency identical to the carrier frequency of the broadband signals. It is also shown that, in a range-independent waveguide, intense surface waves considerably reduce the quality of focusing. This effect is most pronounced in the case of using phase conjugation.  相似文献   
5.
Numerical simulation is carried out to analyze the effect of an internal soliton of the second gravity mode on low-frequency sound propagation in an oceanic shelf region. The simulation is performed using the data of a full-scale experiment performed on the shelf of the South China Sea near Dongsha atoll, where the aforementioned solitons had been detected by stationary vertical thermistor arrays. The calculations take into account the effect of horizontal refraction of sound waves. It is assumed that a stationary acoustic track is oriented across the predominant propagation direction of internal waves. The results of simulation show that, when the soliton crosses the stationary track, some of the sound field modes are focused, whereas other modes are defocused. It is demonstrated that the soliton parameters can be adequately determined from the frequency shifts of the sound field interference pattern. However, such an estimate of the soliton parameters is only possible for a limited length of the stationary track for which the effect of horizontal refraction is sufficiently weak.  相似文献   
6.
Acoustical Physics - Real recordings of bowhead whale signals and numerical simulation were used to investigate the propagation of such signals in an Arctic-type shallow-water waveguide. The...  相似文献   
7.
Acoustical Physics - The paper analytically demonstrates that for a shallow-water waveguide, there can be found an “optimal” bottom profile for which the energy losses with range will...  相似文献   
8.
Yarina  M. V.  Lunkov  A. A.  Godin  O. A.  Katsnelson  B. G. 《Acoustical Physics》2022,68(4):365-370
Acoustical Physics - An approach is proposed for estimating the dispersion characteristics of waveguide modes from analysis of ship noise recorded by two closely spaced and synchronized vertical...  相似文献   
9.
A numerical experiment is carried out to study the long-range surface reverberation in the presence of intense surface waves for the case of using vertical transmitting arrays providing sound field focusing at different depths. To focus the field, a phase conjugation of acoustic waves from a probe source positioned at the focusing point is used. It is demonstrated that surface waves considerably affect the focusing quality at a distance of several tens of kilometers from the transmitting array. This prevents the efficient suppression of long-range reverberation by increasing the focusing depth.  相似文献   
10.
The coherence time and transverse coherence length of a low-frequency (100–300 Hz) sound field that is formed by an omnidirectional point source at a distance of 10–30 km in a shallow-water acoustic waveguide, which is characteristic of an open ocean shelf, were estimated analytically and in a numerical experiment. An anisotropic field of background internal waves is considered as a source of spatiotemporal fluctuations. It is shown that the coherence time decreases as the frequency increases, and strongly depends on the perturbation-movement direction. The transverse coherence length is primarily determined by phase incursions that are related to the cylindrical shape of the acoustic-wave front. In the case of transverse propagation, background internal waves may lead to significant variations in this length. The introduction of compensating phase corrections during processing provides a considerable increase in the average transverse coherence length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号