首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   5篇
物理学   6篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  1997年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The investigation on the properties of LiCoPO4–graphitic carbon foams (LCP-GCF) composites is reported in this work. The diffraction analysis (XRD) on powders confirmed the presence of LiCoPO4 as major crystalline phase and Li4P2O7 and Co2P as secondary phases. The morphological investigation of the composites shows a layer of crystalline spongy-like material on the surface of the GCF for t?=?0 h and of acicular crystallites with different dimensions (5–50 μm) for t?≥?0.1 h. The voltammetric curves (cyclic voltammogramms) show mean values of reduction potential above 5.0 V independently of the annealing time. The LCP-GCF composites deliver a discharge-specific capacity of 76mAh g?1 (t?=?0 h) and of 102mAh g?1 (t?=?0.1 h) at a discharge rate of C/10 and room temperature. The electrochemical impedance spectroscopy data reveal a decrease of the electrical resistance and the improvement of the Li-ion conductivity as a function of the annealing time.  相似文献   
2.
The characterization of composites consisting of graphitic carbon foams coated with a structured lithium nickel phosphate is reported. The LiNiPO4 as cathode material for lithium-ion batteries is prepared by a Pechini-assisted sol-gel process. The coating is performed by soaking the graphitic carbon foams in aqueous solutions containing lithium, nickel salts, and phosphates at 70?°C for 2–4?h and then by treating in flowing air and nitrogen. The formation of the olivine-like structured LiNiPO4 is confirmed by X-ray diffraction analysis performed on powders prepared under very similar conditions. However, crystalline reflections attributed to Li4P2O7 and to Ni3P as secondary phases have been observed. The morphological investigation revealed the presence of a layer on the graphitic foams that consists of interconnected blend of grains with different size. The voltammetric curves show values of the mean peak maxima in the anodic region between 5.1–5.3?V and in the cathodic region at ~4.9?V. The electrochemical measurements deliver a discharge specific capacity of 86?mAhg?1 (at discharge rate of C/10 and RT). The electrochemical impedance spectroscopy data confirm an increase of the electrical resistance after cycling and the decrease of the ionic contribution which indicate the formation/growth of phases behaving like resistors.  相似文献   
3.
An uncomplicated Pechini-assisted sol–gel process in aqueous solutions is used for the synthesis of Li–Co phosphate powders as cathode materials. The powders are annealed under different conditions in flowing nitrogen and in flowing air. The structural, morphological, and electrochemical properties are strongly dependent upon the annealing conditions. After the treatment in air, the X-ray diffraction (XRD) patterns reveal the presence of LiCoPO4 as a single phase. The morphology of the powders consists of a homogeneous and good interconnected blend of grains with different sizes; the cyclic voltammetry (CV) curves show a very good reversibility with very close values of the mean peak maxima in the cathodic region. The electrochemical measurements deliver a discharge specific capacity of 37 mAhg−1 at a discharge rate of C/25 at room temperature. After annealing in nitrogen, the XRD analysis detects the formation of Li4P2O7 and to Co2P as secondary phases; the morphological investigation indicated that the LiCoPO4 particles took shape of prisms with an average size of 2 μm. The CV curves are associated with a large polarization and poor irreversibility. The electrochemical measurements deliver a discharge specific capacity of 42 mAh g−1 at a discharge rate of C/25 at room temperature and lower capacity fade (approx. 35%).  相似文献   
4.
The electronic structure of a solid electrolyte/solid electrode interface (SESEI) of an all-solid-state thin film battery was investigated. The thin film battery consisted of a LiPON solid electrolyte and a LiCoO2 cathode. The lithium phosphorus oxynitride (LiPON) electrolyte was RF sputtered in a step-by-step procedure onto the cathode and investigated by photoelectron X-ray-induced spectroscopy after each deposition step. An intermediate layer was found—composed of some new species—that differs in its chemical composition from the cathode as well as the LiPON solid electrolyte material and changes with growing layer thickness. In contrast, the electronic structure of the underlying cathode material remained predominantly unchanged.  相似文献   
5.
6.
Lithium intercalation materials are of special interest as cathodes in rechargeable batteries. An uncomplicated sol–gel process has been used for the synthesis of Li–Co phosphates powders and, for the first time, of LiCoPO4 films. The powders were prepared from aqueous solutions, containing Li, Co and phosphate precursors to which acid citric and ethylene glycol was added, during the drying process at 75 °C. The X-ray diffraction patterns of the prepared powders confirmed the presence of LiCoPO4 with an olivine-like structure as main phase. The morphological investigations of the powder showed a platelet-like structure with an average grain size of 0.75 μm. The films of LiCoPO4 were deposited onto ITO glass substrates with the combination of the dip-coating process under the same conditions. Finally, the films were annealed in inert atmosphere at 300 °C. The morphological investigations reveal a smooth and homogeneous surface of the prepared Li–Co phosphate films. The preliminary electrical investigation on the prepared LiCoPO4 films showed lithium ions electrochemical activity in the range 3.0–4.5 V.  相似文献   
7.
The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO(2) (M = Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role in energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface formed during the electrochemical Li-deintercalation/intercalation of the LiCoO(2) and Li(Ni,Mn,Co)O(2), have been investigated by X-ray photoelectron spectroscopy. While the chemical composition of the solid-electrolyte interface is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values leads to the disappearance of the interface. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the solid-electrolyte interface layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LiCoO(2) interface and the amount of the Co(2+) ions is increased as the solid-electrolyte interface vanishes. In contrast, the Mn(4+), Co(3+) and Ni(2+) ions of the Li(Ni,Mn,Co)O(2) are stable at the interface under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LiCoO(2) and Li(Ni,Mn,Co)O(2) batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the solid-electrolyte interface layer might be the reason for the fast deterioration of the Li-ion batteries.  相似文献   
8.
Carbon nanotubes (CNT) coated with LiMn1-x Fe x PO4 (0.2?≤?x?≤?0.8), as possible cathode materials, was synthesized by using a sol–gel process (Polyol method), after annealing under flowing nitrogen. X-ray diffraction (XRD) patterns of the composites confirmed the formation of the olivine structured LiMn1-x Fe x PO4 phase and no secondary phases were detected. The morphological investigation revealed the formation of agglomerates with particles size ranging between 300 and 700 nm. XRD investigation of composites shows difference of the morphology by doping CNT and carbon black in the composites. Transmission electron microscopy shows the growth of nano-sized particles on CNT (20–70 nm) and the agglomeration of primary particles to form secondary particles. The X-ray photoelectron spectroscopy showed that the Fe and Mn ions are in divalent states in the LiMn1-x Fe x PO4 composites. The cyclic voltamograms showed the oxidation peaks of iron and manganese ions at 3.53–3.63 and 4.05–4.33 V, respectively, while the reduction peaks were found at 3.21–3.42 V (iron reduction) and 3.85–3.93 V (manganese reduction) depending on the iron content in the composition. The LiMn0.6Fe0.4PO4/CNT composite (x?=?0.4) (with 20 %?wt CNT) delivered a specific capacity of 120 mAhg?1 (at a discharge rate of C/20 and RT).  相似文献   
9.
LiCo1???x Ca x PO4–graphitic carbon foam composites are prepared using a sol–gel method. The structural analysis reveals LiCoPO4 as major crystalline phase and Co2P2O7 (for x?=?0.0) and Co2P, Li3PO4, and (Ca,Co)3(PO4)2 (for x?≥?0.05) as secondary phases. The morphology consists of microcrystalline “islands” with acicular crystallites (5–50 μm size). Transmission electron microscopy (TEM) of the powders showed that the Ca is incorporated into the crystal structure evoking exaggerated grain growth. The voltammetric profiles show a decrease of the voltammetric surface between anodic and cathodic sweeps and a shift of the reduction potentials toward higher values (~4.6 V, x?=?0.1). The electrochemical measurements, at a discharge rate of C/10 (room temperature), show an increase of the discharge-specific capacity from 100 mAhg?1 for x?=?0.0 to 104 mAhg?1 for x?=?0.1. The ac impedance spectroscopy data revealed an improvement of the Li-ion conductivity at high content of Ca ions (x?=?0.1).  相似文献   
10.
Composites of three-dimensional (3D) carbon nanostructures coated with olivine-structured lithium iron phosphates (LiFePO4) as cathode materials for lithium ion batteries have been prepared through a Pechini-assisted reversed polyol process for the first time. The coating has been successfully performed on nonfunctionalized commercially available 3D carbon used as catalysts. Thermal analysis revealed no phase transitions till crystallization occurred at 579 °C. Morphological investigation of the prepared composites showed a very good quality of the coating on the 3D carbon structures. A great enhancement of the crystallinity of the olivine structure and of the composites was revealed by the structural investigation performed on pure LiFePO4 and composites after annealing at 600 °C for 10 h under nitrogen atmosphere. The cyclic voltammetry curves of the composites show well-defined peaks and smaller value of the polarization overpotential indicating an enhancement of electrode reaction reversibility compared to the LiFePO4 phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号