首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   1篇
化学   19篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   39篇
  2022年   2篇
  2019年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
2.
3.
Poly(styrene-co-acrylamide) (PS-AAM) latex was prepared, fractionated by sedimentation under gravity, and characterized by PCS, infrared spectra, secondary and backscattered electron imaging in the scanning electron microscope, and electron spectroscopy imaging in an analytical transmission electron microscope. Three latex fractions were obtained. The lower fraction was opalescent and its particles were the more uniform, concerning size, chemical composition, and topochemical features. This lower fraction was still further fractionated by zonal centrifugation in a density gradient, yielding two fractions with similar macrocrystal-forming abilities but different sizes and chemical compositions. These results confirm those previously obtained for the PS-HEMA latex. Copyright 2000 Academic Press.  相似文献   
4.
5.
6.
The electrical behavior of the cationic, polyacetylene-based, conjugated ionomer, poly[(2-cyclooctatetraenylethyl)trimethylammonium trifluoromethanesulfonate], sandwiched between gold electrodes is reported. The steady-state current of this mixed ionically/electronically conducting system is assigned to be unipolar diffusive hole transport for voltages below approximately 1.4 V, giving way to bipolar migratory transport above approximately 1.4 V. In the low-voltage regime, a non-Faradaically controlled doping model is proposed where p-doping at the anode is balanced by the charging of an ionic double layer at the cathode. In the high-voltage regime, n- and p-type regions extend from the electrodes as the voltage becomes sufficient to drive disproportionation and the electric field required by the redistribution of ions begins to substantially influence carrier transport. The assignment of a transport mechanism is primarily based on analyzing the decay of the steady-state system under short-circuit and open-circuit conditions. First, it is shown that the power describing the power-law decay of the short-circuit current is characteristic of the steady-state carrier profile. Second, it is argued that a component of the time-dependent, open-circuit voltage decaying more rapidly than the time scale for ion motion is indicative of a substantial migratory component to steady-state transport, as observed in the high-voltage regime. The hole and electron mobilities are estimated to be on the order of 10(-7)-10(-6) cm(2) V(-1) s(-1).  相似文献   
7.
Unidirectional electronic current is reported for a device based on the interface between an anionically functionalized and a cationically functionalized polyacetylene. The unidirectional current in this mixed ionically/electronically conducting system is electronic but is regulated by asymmetry in the ionic processes.  相似文献   
8.
9.
The influence of some impurities on the conduction properties of Cr2O3 and Fe2O3 are examined and contrasted. A mechanism is proposed to account for the effect of Ti in Cr2O3.  相似文献   
10.

Background

Antisense oligonucleotide (AON)-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA) of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1), a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e) which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon.

Methods

For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants.

Results

We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression.

Conclusions

We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant for brain function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号