首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   14篇
物理学   7篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Nanoparticles of complex manganites (viz. LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca{0.33}MnO3) have been synthesized using the reverse micellar route. These manganites are prepared at 800‡C and the monophasic nature of all the oxides has been established by powder X-ray diffraction studies. TEM studies show an average grain size of 68, 80 and 50 nm for LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca{0.33}MnO3respectively. Ferromagnetic ordering is observed at around 250 K for LaMnO3, 350 K for La0.67Sr0.33MnO3 and 200 K for La0.67Ca{0.33}MnO3. These Curie temperatures correspond well with those reported for bulk materials with similar composition.  相似文献   
2.
We report on the reflectance of blue bronze crystals in the visible frequency range as a function of temperature. The observed large oscillations in the reflectance at all wavelengths at temperatures near the Peierls transition are interpreted as interference effects stemming from a surface layer. It is found that the surface layer, which appears to be tied to fluctuations, can be as much as 1.6 microns thick.  相似文献   
3.
In this study, flexible silk fibroin protein and biocompatible barium hexaferrite (BaM) nanoparticles were combined and electrospun into nanofibers, and their physical properties could be tuned through the mixing ratios and a water annealing process. Structural analysis indicates that the protein structure of the materials is fully controllable by the annealing process. The mechanical properties of the electrospun composites can be significantly improved by annealing, while the magnetic properties of barium hexaferrite are maintained in the composite. Notably, in the absence of a magnetic field, cell growth increased slightly with increasing BaM content. Application of an external magnetic field during in vitro cell biocompatibility study of the materials demonstrated significantly larger cell growth. We propose a mechanism to explain the effects of water annealing and magnetic field on cell growth. This study indicates that these composite electrospun fibers may be widely used in the biomedical field for controllable cell response through applying different external magnetic fields.  相似文献   
4.
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.  相似文献   
5.
Two coordination polymers, [Mn2(μ-L1)2(μ-N3)2]n (1) and [Mn(μ-HL2)(SCN)2]n (2), were assembled in a single-pot from MnCl2·4H2O, HL1 (2-acetylpyridine isonicotinoylhydrazone) or HL2 (2-acetylpyridine nicotinoylhydrazone) and ancillary ligand sources (NaN3 or NH4NCS). The products were fully characterized, including by single-crystal X-ray diffraction, which revealed a 2-D metal–organic layer in 1 and a 1-D zigzag coordination chain in 2. Both 1 and 2 are constructed from six-coordinate Mn(II) nodes that adopt distorted octahedral (MnN5O) environments; the adjacent nodes are driven by the μ-L1 and μ-N3 linkers in 1 or μ-HL2 linkers in 2 to form different metal–organic networks. Their topological classification was performed, disclosing the hcb and 2C1 topology in 1 and 2, respectively. Different weak non-covalent interactions promote dimensionality extension. Variable-temperature magnetic susceptibility measurements were carried out, revealing weak ferromagnetic and antiferromagnetic interactions in 1 and 2, respectively.  相似文献   
6.
A new process has been developed for the synthesis of nanocrystalline niobium oxide and niobium diboride using an amorphous niobium precursor obtained via the solvothermal route. On varying the ratio of niobium precursor to boron and the reaction conditions, pure phases of nanostructured niobium oxides (Nb(2)O(5), NbO(2)), niobium diboride (NbB(2)) and core-shell nanostructures of NbB(2)@Nb(2)O(5) could be obtained at normal pressure and low temperature of 1300 °C compared to a temperature of 1650 °C normally used. The above borothermal process involves the in situ generation of B(2)O(2) to yield either oxide or diboride. The niobium oxides and borides have been characterized in detail by XRD, HRTEM and EDX studies. The core-shell structure has been investigated by XPS depth profiling, EFTEM and EELS (especially to characterize the presence of boron and the shell thickness). The niobium diboride nanorods (with high aspect ratio) show a superconducting transition with the T(c) of 6.4 K. In the core-shell of NbB(2)@Nb(2)O(5), the superconductivity of NbB(2) is masked by the niobium oxide shell and hence no superconductivity was observed. The above methodology has the benefits of realizing both oxides and borides of niobium in nanocrystalline form, in high purity and at much lower temperatures.  相似文献   
7.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   
8.
A monophasic sample of Ag2MnSn3S8 has been prepared by heating stoichiometric amounts of the constituent metals and sulfur in evacuated silica tubes at 670°C. Structural analysis of Ag2MnSn3S8 using Rietveld refinement of powder X-ray diffraction data shows that it crystallizes in the space group with a=10.6984(2) Å. Magnetization measurements in the temperature range 5-300 K indicate paramagnetic behavior with a μeff of 5.80 μB, consistent with the divalent nature of manganese. Electrochemical studies show a coulombic capacity of ∼50 Ah kg−1 for the cell constructed with Ag2MnSn3S8 as the positive electrode.  相似文献   
9.
We describe the synthesis of two new quadruple perovskites, Sr(2)La(2)CuTi(3)O(12) (I) and Ca(2)La(2)CuTi(3)O(12) (II), by solid-state metathesis reaction between K(2)La(2)Ti(3)O(10) and A(2)CuO(2)Cl(2) (A = Sr, Ca). I is formed at 920 degrees C/12 h, and II, at 750 degrees C/24 h. Both the oxides crystallize in a tetragonal (P4/mmm) quadruple perovskite structure (a = 3.9098(2) and c = 15.794(1) A for I; a = 3.8729(5) and c = 15.689(2) A for II). We have determined the structures of I and II by Rietveld refinement of powder XRD data. The structure consists of perovskite-like octahedral CuO(4/2)O(2/2) sheets alternating with triple octahedral Ti(3)O(18/2) sheets along the c-direction. The refinement shows La/A disorder but no Cu/Ti disorder in the structure. The new cuprates show low magnetization (0.0065 micro(B) for I and 0.0033 micro(B) for II) suggesting that the Cu(II) spins are in an antiferromagnetically ordered state. Both I and II transform at high temperatures to 3D perovskites where La/Sr and Cu/Ti are disordered, suggesting that I and II are metastable phases having been formed in the low-temperature metathesis reaction. Interestingly, the reaction between K(2)La(2)Ti(3)O(10) and Ca(2)CuO(2)Cl(2) follows a different route at 650 degrees C, K(2)La(2)Ti(3)O(10) + Ca(2)CuO(2)Cl(2) --> CaLa(2)Ti(3)O(10) + CaCuO(2) + 2KCl, revealing multiple reaction pathways for metathesis reactions.  相似文献   
10.
Double perovskites of the type LaBaNi1?xCoxTaO6 (0 ≤ x ≤ 1) have been synthesized by solid state method. The compounds crystallize in the tetragonal space group, I4/m. Rietveld refinement has been carried out to determine the phase purity and to study the cation ordering. X-ray photoelectron spectroscopy confirms Co(II) in all compositions. The end members in LaBaNi1?xCoxTaO6 show high dielectric constant values. Antiferromagnetic ordering has been observed for all the compositions and the ordering temperature in LaBaNi1?xCoxTaO6 gradually decreases with increase in Co doping, which has been attributed to the decrease in covalence of Co/Ni?O bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号