首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
化学   43篇
数学   1篇
物理学   17篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Poplar (Populus) and birch (Betula) species are widely distributed throughout the northern hemisphere, where they are foundation species in forest ecosystems and serve as important sources of pulpwood. The ecology of these species is strongly linked to their foliar chemistry, creating demand for a rapid, inexpensive method to analyze phytochemistry. Our study demonstrates the feasibility of using near-infrared reflectance spectroscopy (NIRS) as an inexpensive, high-throughput tool for determining primary (e.g., nitrogen, sugars, starch) and secondary (e.g., tannins, phenolic glycosides) foliar chemistry of Populus and Betula species, and identifies conditions necessary for obtaining reliable quantitative data. We developed calibrations with high predictive power (residual predictive deviations?≤?7.4) by relating phytochemical concentrations determined with classical analytical methods (e.g., spectrophotometric assays, liquid chromatography) to NIR spectra, using modified partial least squares regression. We determine that NIRS, although less sensitive and precise than classical methods for some compounds, provides useful predictions in a much faster, less expensive manner than do classical methods.
Graphical abstract
Near-infrared reflectance spectroscopy with calibrations based on modified partial least squares regression can provide quantitative measurements of foliar nitrogen, carbohydrate, tannin, and phenolic glycoside content in poplar and birch  相似文献   
2.
During the last six years several incidents have occurred with dioxins in feed, stressing the need for rapid screening methods for these compounds. The most recent incident was the contamination of bakery waste used for animal feed due to the use of waste wood for drying of the material. In addition to Germany, the material was also shipped to the Netherlands. Levels up to 12 ng TEQ/kg have been detected, being about 15 times over the current limit of 0.75 ng TEQ/kg. In the Netherlands a combined strategy of screening with the CALUX-bioassay and the HRGC/HRMS confirmatory method was used to rapidly control the incident. Pigs were contaminated by the incident but only to a very limited extent. Despite the rather low limits for pig meat, the CALUX bioassay showed excellent performance, once again confirming the value of this assay.  相似文献   
3.
The degradation of the cathodoluminescence (CL) intensity of cerium-doped yttrium silicate (Y2SiO5:Ce) phosphor powders was investigated for possible application in low voltage field emission displays (FEDs). Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of commercially available Y2SiO5:Ce phosphor powders. The degradation of the CL intensity for the powders is consistent with a well-known electron-stimulated surface chemical reaction (ESSCR) model. It was shown with XPS and CL that the electron stimulated reaction led to the formation of a luminescent silicon dioxide (SiO2) layer on the surface of the Y2SiO5:Ce phosphor powder. XPS also indicated that the Ce concentration in the surface layer increased during the degradation process and the formation of CeO2 and CeH3 were also part of the degradation process. The CL intensity first decreased until about 300 C cm−2 and then increased due to an extra peak arising at a wavelength of 650 nm.  相似文献   
4.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   
5.
In this study, molecular dynamics simulations were carried out on Lys- and Arg-containing Ala-based peptides (i.e. Ace-(AAAAK)(n)A-NH(2) and Ace-(AAAAR)(n)A-NH(2), where n=1-4), in order to explore and characterize their folding processes. For the oligopeptides, the evolution of α-helical structure with regard to the whole conformation, as well as to each residue was investigated, and the helix-forming propensities were characterized. On the basis of the helicity curves, representing the alteration of average helicity as a function of time, the typical time values describing the folding processes and subprocesses were identified. In the case of each peptide, the evolution and role of helix-stabilizing, non-local and side-chain-to-backbone H-bonds were examined. The appearing i←i+4 H-bonds pointed out the role of these interactions in the stabilization of α-helical conformations, while the occurring i←i+3 H-bonds indicated the presence of β-turn or 3(10)-helical structures. Studying the formation and role of non-local and side-chain-to-backbone H-bonds led to the observation that these types of interactions produced an effect on the evolution of helical conformations, as well as on the folding processes.  相似文献   
6.
Y2SiO5:Ce phosphor thin films were grown onto Si(100) substrates with pulsed laser deposition (PLD) using a 248-nm KrF excimer laser. Process parameters were varied during the growth process and the effect on the surface morphology and cathodoluminescence (CL) was analysed. The process parameters that were changed included the following: gas pressure (vacuum (5×10−6 Torr), 1×1−2 Torr and 1 Torr O2), different gas species (O2, Ar and N2 at a pressure of 455 mTorr), laser fluence (1.6±0.1 J cm−2 and 3.0±0.3 J cm−2) and substrate temperature (400 and 600°C). The surface morphology was investigated with atomic force microscopy (AFM). The morphology of the thin films ablated in vacuum and 10 mTorr ambient O2 showed more or less the same trend. An increase in the pressure to 1 Torr O2, however, showed a definite increase in deposited particle sizes. Ablation in N2 gas resulted in small particles of 20 nm in diameter and ablation in O2 gas produced bigger particles of 20, 30 and 40 nm as well as an agglomeration of these particles into bigger size clusters of 80 to 100 nm. Ablation in Ar gas led to particle sizes of 30 nm and the particles were much more spherically defined and evenly distributed on the surface. The higher fluence deposition led to bigger particle and grain sizes as well as thicker layers with respect to the lower fluence. The particle sizes of the higher fluence vary mainly between 130 and 140 nm and the lower fluence sizes vary between 50 and 60 nm. The higher fluence particles consist of smaller particles ranging from 5 to 30 nm as measured with AFM. The surface structure of the thin film ablated at 400°C substrate temperature is less compact (lesser agglomeration of particles than at 600°C). The increase in substrate temperature definitely resulted in a rougher surface layer. CL was measured to investigate the effect of the surface morphology on the luminescent intensities. The increased O2 ambient (1 Torr) resulted in a higher CL intensity compared to the thin films ablated in vacuum. The thin film ablated in Ar gas showed a much higher CL intensity than the other thin films. Ablation at a high fluence resulted in a higher CL intensity. The higher substrate temperature resulted in better CL intensities. The more spherically shaped particles and rougher surface led to increase CL intensities.  相似文献   
7.
X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Raman and photoluminescence spectroscopy were used to evaluate the surface properties of n-type InAs (111)A etched in a 1% Br–methanol solution. Etching completely removes the native oxides from the surface and enhances the photoluminescence response. The adsorption of bromine onto the InAs surface leads to the formation of In–Brx and As–Brx bonds (x = 1, 2, 3) as inferred from changes in the In 3d3/2;5/2 and As 3d core level binding energies. The etch rate is found to decrease due to strong anisotropic effects and the high volatility of the bromine species. A 1 min Br–methanol etch was found to enhance the photoluminescence intensity by a factor of 3, probably due to a reduction in the surface state density upon de-oxidation of the surface. This is thought to be due to reductions in the surface state density. The presence of native oxides enhances both the surface accumulation layer and the surface state density.  相似文献   
8.
Biological assays at the single molecule level are crucial to fundamental studies of DNA-protein mechanisms. In order to cater for high throughput applications, one area of immense research potential is single-molecule bioassays where miniaturized devices are developed to perform rapid and effective biological reactions and analyses. With the success of various emerging technologies for engineering miniaturized structures down to the nanoscale level, supported by specialized equipment for detection, many investigations in the field of life science that were once thought impossible can now be actively explored. In this review, the significance of downscaling to the single-molecule level is firstly presented in selected examples, with the focus placed on restriction enzyme assays. To determine the effectiveness of single-molecule restriction enzyme reactions, simple and direct analytical methods based on DNA stretching have often been reliably employed. DNA stretching can be realized based on a number of working principles related to the physical forces exerted on the DNA samples. We then discuss two examples of a nanochannel system and a microchamber system where single-molecule restriction enzyme digestion and DNA stretching have been integrated, which possess prospective capabilities of developing into highly sensitive and high-throughput restriction enzyme assays. Finally, we take a brief look at the general trends in technological development in this field by comparing the advantages and disadvantages of performing assays at bulk, microscale and single-molecule levels. Figure Minaturization of Restriction Enzyme Assays and DNA Stretching  相似文献   
9.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   
10.
Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (?b) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at −0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb–O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.  相似文献   
1 [2] [3] [4] [5] [6] [7] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号