首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Summary We report the design of a cyclic, eight-residue peptide that possesses the catalytic triad residues of the serine proteases. A manually built model has been relaxed by 0.3 ns of molecular dynamics simulation at room temperature, during which no major changes occurred in the peptide. The molecule has been synthesised and purified. Two-dimensional NMR spectroscopy provided 35 distance and 7 torsion angle constraints, which were used to determine the three-dimensional structure. The experimental conformation agrees with the predicted one at the -turn, but deviates in the arrangement of the disulphide bridge that closes the backbone to a ring. A 1.2 ns simulation at 600 K provided extended sampling of conformation space. The disulphide bridge reoriented into the experimental arrangement, producing a minimum backbone rmsd from the experimental conformation of 0.8 . At a later stage in the simulation, a transition at Ser3 produced more pronounced high-temperature behaviour. The peptide hydrolyses p-nitrophenyl acetate about nine times faster than free histidine.  相似文献   
2.
A cyclic nonapeptide library displayed on filamentous bacteriophages was selected 6 times against α-chymotrypsin (EC 3.4.21.1) at three different pH conditions (6.5, 7.0, and 7.5). Phage peptide clones from the sixth selection, at all three pH conditions, interacted more strongly with α-chymotrypsin than the original library and a wild-type phage did. DNA sequencing of the selected phage peptide clones showed that different cyclic nonapeptide sequences had been selected at the different pH conditions. The oxidized form of the synthetic peptide, Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys, selected at pH 7.5, could completely inhibit the enzymatic activity of α-chymotrypsin. The structurally related enzymes trypsin (bovine) and elastase (porcine) were only marginally inhibited by the same peptide under the same conditions. The inhibition constant for α-chymotrypsin was estimated to be 10-6 M. Phage clones expressing this peptide had a lower affinity for phenylmethylsulfonylfluoride-modified α-chymotrypsin than for natural α-chymotrypsin as determined by an enzyme immunosorbent assay. This peptide phage clone was also competitively prevented from binding to α-chymotrypsin by the corresponding synthetic oxidized peptide. Collectively, the results suggest that the oxidized form of the selected peptide Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys interacts with the active site of α-chymotrypsin and acts as a specific inhibitor to the enzyme. To our knowledge, the selected sequence Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys has not been found in nature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号