首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
化学   51篇
力学   1篇
数学   6篇
物理学   31篇
  2021年   1篇
  2016年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
Extensible lattice sequences have been proposed and studied in [F.J. Hickernell, H.S. Hong, Computing multivariate normal probabilities using rank-1 lattice sequences, in: G.H. Golub, S.H. Lui, F.T. Luk, R.J. Plemmons (Eds.), Proceedings of the Workshop on Scientific Computing (Hong Kong), Singapore, Springer, Berlin, 1997, pp. 209–215; F.J. Hickernell, H.S. Hong, P. L’Ecuyer, C. Lemieux, Extensible lattice sequences for quasi-Monte Carlo quadrature, SIAM J. Sci. Comput. 22 (2001) 1117–1138; F.J. Hickernell, H.Niederreiter, The existence of good extensible rank-1 lattices, J. Complexity 19 (2003) 286–300]. For the special case of extensible Korobov sequences, parameters can be found in [F.J. Hickernell, H.S. Hong, P. L’Ecuyer, C.Lemieux, Extensible lattice sequences for quasi-Monte Carlo quadrature, SIAM J. Sci. Comput. 22 (2001) 1117–1138]. The searches made to obtain these parameters were based on quality measures that look at several projections of the lattice. Because it is often the case in practice that low-dimensional projections are very important, it is of interest to find parameters for these sequences based on measures that look more closely at these projections. In this paper, we prove the existence of “good” extensible Korobov rules with respect to a quality measure that considers two-dimensional projections. We also report results of experiments made on different problems where the newly obtained parameters compare favorably with those given in [F.J. Hickernell, H.S. Hong, P. L’Ecuyer, C. Lemieux, Extensible lattice sequences for quasi-Monte Carlo quadrature, SIAM J. Sci. Comput. 22 (2001) 1117–1138].  相似文献   
2.
The miscibility of polyester/nitrocellulose blends was investigated by differential scanning calorimetry and Fourier-transform infrared (FTIR) spectroscopy. Two nitrocelluloses (NC) derived from wood and having different nitrogen contents (12.62 and 13.42%) were used. On the basis of the glass transition temperature criterion, poly(?-caprolactone) (PCL), poly(valerolactone), poly(ethylene adipate), and poly(butylene adipate) are miscible with nitrocellulose, whereas poly(α-methyl α-propyl β-propiolactone) and poly(α-methyl β-proiolactone) are immiscible. The Tg versus composition curves of PCL/NC blends do not follow a monotone function but exhibit a singular point at a critical PCL volume fraction of 0.51 for NC-1342 and 0.45 for NC-1262 in agreement with Kovacs' theory. A shift of 17 cm-1 of the carbonyl stretching band was observed with PCL/NC blends and is taken as evidence for hydrogen bonding interaction between the PCL carbonyl group and NC hydroxyl group. The frequency difference between the free hydroxyl absorbance and the absorbances of the hydrogen-bonded species was found to be 85 cm-1 in pure NC and 125 cm-1 in PCL/NC blends; it indicates that the average strength of this interaction is stronger than the corresponding self-associated hydrogen bonding in pure NC. The presence of a dipole-dipole interaction between the nitrate-ester groups of NC and the carbonyl groups of the polyesters is reported. The relative strength of the hydrogen bonding and dipole-dipole interactions is discussed and correlated with polymer miscibility.  相似文献   
3.
A new and general synthesis of 2,5-dioxopiperazine condensed with the thiazolidine ring is described. The synthesis involves the use of N-ethoxy carbonyl-2-ethoxy-1-2-dihydroquinoleine (EEDQ) as activating agent to form the 2,5-diketopiperazine (EEDQ) as activating agent to form the 2,5-diketopiperazine ring. By this method 9-carbobutoxy-7,7-dimethyl-2,5-dioxo-8-this-1,4-diazabicyclo[4.3.0] nonane (6) and 9-carboxy-8,8 dimethyl-2,5-dioxo-7-thia-1,4-diazabicy clo [4.3.0] nonane (8) were obtained, with near quantitative yield, from 4-carboxy-2-carbobutoxy-5,5 dimethylthiazolidine (4). The former was transformed into acid 7 by hydrolysis with barium bydroxyde and the latter was esterified with diazornethane thus producing a methylester 9. The use of the ethy lester of N-(2-cabobutoxy-4-carboxy-5,5-dimethyl-thiazolidine)glycine (10) for synthesis of 6 was also successful. The spectromethric data were interpreted and confirm the proposed structure of the new compounds.  相似文献   
4.
The spontaneous polarization (PS) of a ferroelectric liquid crystal is modulated reversibly by photocyclization of the dopant 1,2-bis[5'-(4' '-heptyloxyphenyl)-2'-methylthien-3'-yl]perfluorocyclopentene. The magnitude of PS photomodulation increases with dopant concentration up to 3 mol %, and the resulting photoswitch is fatigue resistant and bistable. To the best of our knowledge, this is the first example of a bistable ferroelectric liquid crystal photoswitch to be reported in the literature.  相似文献   
5.
The atropisomeric dopant 2,2',6,6'-tetramethyl-3,3'-dinitro-4,4'-bis[(4-nonyloxybenzoyl)oxy]biphenyl (1) induces a ferroelectric SmC phase when doped into the SmC liquid crystal hosts 2-(4-butyloxyphenyl)-5-octyloxypyrimidine (PhP1) and (+/-)-4-[(4-methylhexyl)oxy]phenyl 4-decyloxybenzoate (PhB). The propensity of dopant 1 to induce a spontaneous polarization (polarization power) is much higher in PhP1 than in PhB (1555 nC/cm(2) vs <35 nC/cm(2)), which is attributed to a greater propensity of 1 to undergo chirality transfer via core-core interactions with PhP1. In previous work, we postulated that a chiral perturbation exerted by 1 in PhP1 amplifies the polarization power of the dopant by causing a chiral distortion of the mean field potential (binding site) constraining the dopant in the SmC host, as described by the Chirality Transfer Feedback (CTF) model. To test the validity of the CTF model, and to provide a more direct assessment of the chiral perturbation exerted by dopant 1 on surrounding host molecules, we measured the effect of 1 on the polarization power of other chiral dopants acting as probes. In one series of experiments, (S,S)-5-(2,3-difluorooctyl)-2-(4-octylphenyl)pyridine (MDW950) and (S)-4-(1-methylheptyloxy)phenyl 4-decyloxybenzoate (4), which mimic the structures of PhP1 and PhB, were used as probes. In another series of experiments, the atropisomeric dopant 2,2',3,3',6,6'-hexamethyl-4,4'-bis[(4-nonyloxybenzoyl)oxy]biphenyl (2) was used as probe in PhP1. The results of the probe experiments suggest that dopant 1 exerts a much stronger chiral perturbation in PhP1 than in PhB. More significantly, the results of experiments using 2 as probe show that the chiral perturbation exerted by 1 can amplify the polarization power of another atropisomeric dopant, thus providing the first experimental evidence of the CTF effect.  相似文献   
6.
High-performance liquid chromatographic (HPLC) methods were developed for the analysis of two compounds in a series of new antiallergenic agents, 1-[4-[3-[4-[bis(4-fluorophenyl)hydroxymethyl]-1-piperidinyl] propoxy]-3-methoxyphenyl]ethanone and its active acidic metabolite in plasma. The methods utilize ultraviolet or fluorescence detection, liquid-liquid extraction or solid-phase extraction and reversed-phase HPLC. The drugs were quantitated in samples from bioavailability studies performed in dogs. Calibrations were in the ng/ml concentration range for both compounds in plasma.  相似文献   
7.
Solid-liquid phase transfer of cyanide ion by 18-cro'wn-6 increases the yield of the Reissert reaction and eliminates the undesirable pseudo-base formation.  相似文献   
8.
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of approximately 14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.  相似文献   
9.
10.
Specific labeling of biomolecules with biochemical and biophysical probes is a central element of proteomics research. Here we describe a coumarin-phosphine dye that undergoes activation of coumarin fluorescence upon Staudinger ligation with azides. Since azides can be metabolically incorporated into cellular proteins and oligosaccharides, this dye may be a useful tool for profiling proteins and their posttranslational modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号