首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   8篇
  国内免费   11篇
化学   111篇
晶体学   4篇
力学   18篇
综合类   1篇
数学   17篇
物理学   53篇
  2024年   1篇
  2023年   15篇
  2022年   13篇
  2021年   15篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   15篇
  2012年   5篇
  2011年   10篇
  2010年   10篇
  2009年   8篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2002年   13篇
  2001年   2篇
  2000年   1篇
  1999年   7篇
  1998年   1篇
  1997年   3篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
1.
The dependence of the beam propagation factor (M 2 parameter) with the absorbed pump power in the case of monolithic microchip laser under face-cooled configuration is extensively studied. Our investigations show that the M 2 parameter is related to the absorbed pump power through two parameters (α and β) whose values depend on the laser material properties and laser configuration. We have shown that one parameter arises due to the oscillation of higher order modes in the microchip cavity and the other parameter accounts for the spherical aberration associated with the thermal lens induced by the pump beam. Such dependency of M 2 parameter with the absorbed pump power is experimentally verified for a face-cooled monolithic microchip laser based on Nd3+ -doped GdVO4 crystal and the values of α and β parameters were estimated from the experimentally measured data points.  相似文献   
2.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   
3.
4.
We reported a simple and universal strategy for DNA-mediated assembly of CdTe quantum dots (QDs) and lanthanide-doped upconversion nanoparticles (UCNPs). Such DNA-QD/UCNPs heterostructures not only maintains both fluorescent properties of QDs and upconversion luminescence behaviors of UCNPs, but also offers a polyvalent DNA surface, allowing for targeted dual-modality imaging of cancer cells using an aptamer  相似文献   
5.
Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1–Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C–O bond activating catalytic reactions of esters.

Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts.  相似文献   
6.
A Zr-based metal-organic framework has been synthesized and employed as a catalyst for photochemical carbon dioxide reduction coupled with water oxidation. The catalyst shows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property, which is further confirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbon dioxide with a turn-over frequency (TOF) of 0.69 h−1 in addition to oxygen, which was produced with a TOF of 0.54 h−1. No external photosensitizer is used and the ligand itself acts as the light harvester. The efficient and selective photochemical carbon dioxide reduction to formic acid with concomitant water oxidation using Zr-based MOF as catalyst is thus demonstrated here.  相似文献   
7.
8.
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor–Green vortex, Shu–Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.  相似文献   
9.
Quality control plays a key role in the application of Chinese materia medica, especially in the preparation of traditional Chinese medicine. A pseudotargeted analysis method using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry that was operated in the sequential window acquisition of all theoretical spectra mode was proposed to explore the chemical markers of traditional Chinese medicine preparation. Full-scan-based untargeted analysis was applied to extract the target ions. After data preprocessing, 302 target ions were extracted and used for the subsequent sequential window acquisition of all theoretical spectra analyses. The established sequential window acquisition of all theoretical spectra-based pseudotargeted approaches exhibited good repeatability and a wide linear range. The established method was successfully applied to discover analytical markers for the Yuanhu Zhitong tablet. After multivariate statistical analysis, 94 potential markers were identified. Ten markers were annotated by matching accurate m/z and product ion information obtained from previous reports. It is clearly indicated that the pseudotargeted analysis could make a great contribution to the quality assessment of traditional Chinese medicine preparation as a newly emerging technique.  相似文献   
10.
The optimized molecular structures, harmonic vibrational wavenumbers, and the corresponding vibrational assignments of (1S,2S)-tramadol and (1R,2R)-tramadol are computationally examined using the B3LYP density functional theory method together with the standard 6–311++G(d,p) and def2-TVZP basis sets. The optimized structures show that phenolic rings of both 1R,2R and 1S,2S tramadol adopt planar geometry, which are slightly distorted due to the substitution at the meta-position; and the six-membered cyclohexane adopts a slightly distorted chair conformation. The 1S,2S enantiomer is energetically more favorable than 1R,2R with the energy differences of 1.32 and 1.03 kcal/mol obtained at B3LYP/6–311++G(d,p) and B3LYP/Def2-TVZP levels, respectively. The analysis of the binding pocket in the silico molecular docking with the m-opioid receptor shows that it originated two clusters with the 1S,2S enantiomer and one cluster with the 1R,2R enantiomer of tramadol. The results point to a more stable complex of the m-opioid receptor with the 1R,2R enantiomer of tramadol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号