首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
化学   41篇
力学   7篇
数学   10篇
物理学   42篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1967年   2篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
A high performance liquid chromatography (HPLC) method is described for the determination of agmatine, an endogenous neuromodulator. The method involves pre-column derivatization of the sample with a fluorescent tagging reagent, 7-fluoro-4-nitrobenzoxadiazole (NBD-F). The resulting agmatine derivative is stable and can be readily extracted into ethyl acetate at pH 8.5. The extraction enhances the quantification of low level agmatine because it eliminates chromatographic peaks caused by endogenous amino acids. The HPLC separation is carried out on a C8 reversed phase column and completed in less than 10 min. With laser-induced fluorescence (LIF) detection, the detection limit is 5×10−9 M agmatine. Method precision (coefficient of variation) is 5% for agmatine in human plasma at the sub-μM level. This method has been validated by determination of agmatine in biological samples including human plasma and rat brain and stomach tissues.  相似文献   
5.
6.
7.
8.
9.
We address the problem of scheduling in programs involving the production of multiple units of the same product. Our study was motivated by a construction program for fast naval patrol boats. Other applications of this problem include procurement of multiple copies of aircraft, spacecraft, and weapon systems. In this problem we must decide how many units of the product to assign to each of a number of available crews (individuals, teams, subcontractors, etc.). These types of problems are characterized by two potentially conflicting considerations: 1) the need to complete each unit by its contractual due date, and 2) learning effects. Because of the first consideration, there is a tendency to use multiple crews for simultaneous production, so that meeting due dates is assured. However, the second consideration encourages assigning many units to a single crew so that learning effects are maximized. We study this scheduling problem with two different penalty cost structures and develop models for both versions. The models trade-off the penalty associated with late deliveries and the savings due to learning (and possibly incentive payments for early completion). We discuss different heuristic algorithms — simulated annealing, a genetic algorithm, and a pair-wise swap heuristic — as well as an exhaustive search to determine a baseline for comparisons. Our computational results show that the pair-wise swap algorithm is the most efficient solution procedure for these models.  相似文献   
10.
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug‐induced toxicity. Reactive metabolite detection using in vitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N‐(2‐bromocarbobenzyloxy)‐GSH (GSH‐Br), for the in vitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. In vitro rat microsomal incubations were performed with GSH and GSH‐Br for each drug with subsequent analysis by liquid chromatography/high‐resolution mass spectrometry on an electrospray time‐of‐flight (ESI‐TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug‐specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH‐Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH‐Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号