首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   7篇
力学   1篇
数学   4篇
物理学   8篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1996年   1篇
  1995年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
A variety of 2-aryl-N, N-dimethylallylic amines have been reacted with butyllithium and t-butyllithium to produce the corresponding 3-butyl and 3-t-butyl substituted 2-aryl-propenes. This procedure represents a convenient and clean method for the synthesis of α-substituted styrenes and related substances.  相似文献   
2.
A fundamental mathematical framework for applications of Doublet Mechanics to ultrasound propagation in a discrete material is introduced. A multiscale wave equation, dispersion relation for longitudinal waves, and shear waves are derived. The van Hove singularities and corresponding highest frequency limits for the Mth-order wave equations of longitudinal and shear waves are determined for a widely used microbundle structure. Doublet Mechanics is applied to soft tissue and low-density polyethylene. The experimental dispersion data for soft tissue and low-density polyethylene are compared with results predicted by Doublet Mechanics and an attenuation model based on a Kramers-Kronig relation in classical continuum mechanics.  相似文献   
3.
4.
Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed.  相似文献   
5.
The complexes CpFe(CO)(2)Ph and [CpFe(CO)(2)](2) cleave DNA in the presence of H2O2 or organic peroxides to give products resulting from the formal hydrolysis of the phosphodiester groups.  相似文献   
6.
We present a detailed comparison between subsequent versions of commercially available wavelength-scanned cavity ring-down water isotope analysers (L2120-i and L2130-i, Picarro Inc.). The analysers are used in parallel in a continuous mode by adaption of a low-volume flash evaporation module. Application of the analysers to ice-core analysis is assessed by comparison between continuous water isotope measurements of a glacial ice-core from Severnaya Zemlya with discrete isotope-ratio mass spectrometry measurements performed on parallel samples from the same ice-core. The great advances between instrument versions, particularly in the measurement of δ2H, allow the continuous technique to achieve the same high level of accuracy and precision obtained using traditional isotope spectrometry techniques in a fraction of the experiment time. However, when applied to continuous ice-core measurements, increased integration times result in a compromise of the achievable depth resolution of the ice-core records.  相似文献   
7.
Six different formulations equivalent to the statement that, for n ? 2, the sum ∑k = 1n (?1)kS(n, k) ≠ 0, where the S(n, k) are Stirling numbers of the second kind, are shown to hold. Using number-theoretic methods, a sufficient condition for the above statement to be true for a set of positive integers n having density 1 is then obtained. It remains open whether it is true for all n > 2. The equivalent statements then yield information on the irreducibility of the polynomials ∑k = 1nS(n, k)tk = 1 over the rationals, the nonreal zeros for successive derivatives (ddz)nexp(eiz), a gap theorem for the nonzero coefficients of exp(?ez), and the continuous solution of the differential-difference equation ?(x) = 1, 0 ? x < 1, ?′(x) = ?¦x¦?(x ? 1), 1 ? x < ∞, where ∥ denotes the greatest integer function.  相似文献   
8.

Background  

It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI.  相似文献   
9.
The horizontal ducting of sound by an oceanic temperature front over a sloping bottom is studied with an idealized wedge model consisting of a lateral interface across the slope. The water outside the frontal interface has higher temperature, hence faster sound speed, and it will produce inshore reflection/refraction of the sound. Combining the offshore refraction caused by the sloping bottom, propagating sound can be ducted along the front. An analytical solution to the sound pressure field in the idealized model is derived, and an example is presented to demonstrate and discuss the ducting effect.  相似文献   
10.
Real-time measurements of acoustic streaming velocities and surface temperature fields using synchronized particle image velocimetry and infrared thermography are reported. Measurements were conducted using a 20 kHz Langevin type acoustic horn mounted vertically in a model sonochemical reactor of either degassed water or a glycerin-water mixture. These dissipative phenomena are found to be sensitive to small variations in the medium viscosity, and a correlation between the heat flux and vorticity was determined for unsteady convective heat transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号