首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   1篇
化学   69篇
晶体学   1篇
力学   1篇
数学   4篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   10篇
  2004年   9篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有79条查询结果,搜索用时 0 毫秒
1.
A nucleophilic substitution reaction between 4-tert-butylbenzyl bromide and a series of iodide salts has been performed in oil-in-water microemulsions based on either a fatty alcohol ethoxylate or a sugar surfactant. The reaction kinetics was compared with the kinetics of the same reaction performed in a microhomogeneous reaction medium, d-MeOH. Previous results showing a particularly high reactivity in the microemulsion based on the fatty alcohol ethoxylate was confirmed. It was shown that in both microemulsions the reaction rate was almost independent of the choice of counterion to iodide. This indicates that complexation of the cation with the surfactant headgroup, which, in particular, could have taken place with surfactants containing oligooxyethylene chains (a “crown ether effect”), seems not to be of importance.

127I NMR studies, as well as quadrupole splitting experiments performed by 2H NMR, indicate that there is a certain accumulation of iodide at the oil–water interface of the microemulsions. It is difficult to draw any quantitative conclusions in this respect, however.

The results obtained in this study, combined with results from previous investigations of the same reaction, indicate that the unexpectedly high reactivity obtained in the microemulsion based on a surfactant containing an oligooxyethylene headgroup is most probably due to the nucleophile being poorly solvated when present in the headgroup layer of such a microemulsion. Poorly solvated anions are known to be highly reactive nucleophiles.  相似文献   

2.
3.
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant of a generalized Fourier transform (GFT) becomes particularly simple and fast. Characterizations for finite element triangulations of a symmetric domain are given, and formulas for assembling the block-diagonalized matrix directly are presented. It is emphasized that the GFT preserves symmetric (Hermitian) properties of an equivariant matrix. By simulating the heat equation at the surface of a sphere discretized by an icosahedral grid, it is demonstrated that the block-diagonalization is beneficial. The gain is significant for a direct method, and modest for an iterative method. A comparison with a block-diagonalization approach based upon the continuous formulation is made. It is found that the sparse GFT method is an appropriate way to discretize the resulting continuous subsystems, since the spectrum and the symmetry are preserved. AMS subject classification (2000)  43A30, 65T99, 20B25  相似文献   
4.
5.
The reaction between 4-tert-butylbenzyl bromide and potassium iodide was carried out in microemulsions based on different nonionic surfactants, and the reaction rates were compared with those obtained in two-phase systems with added phase-transfer agent, either a quaternary ammonium salt or a crown ether. The reactions were relatively fast in the microemulsions and extremely sluggish in the two-phase systems without additional phase-transfer agent. Addition of a phase-transfer agent did not accelerate the reaction when a hydrocarbon was used as organic solvent, neither in the two-phase system nor in the microemulsion. When a chlorinated hydrocarbon was used as solvent, phase-transfer catalysis became effective and the rate obtained in the two-phase system with an equimolar amount of phase-transfer agent added was higher than that obtained in the microemulsion. When a catalytic amount of phase-transfer agent was used, the rate in the two-phase system was about the same as the rate obtained in the microemulsion without the phase-transfer agent. The combined approach, that is, use of a microemulsion as the reaction medium and addition of a phase-transfer agent, gave the highest reaction rate. The quaternary ammonium salt (tetrabutylammonium hydrogen sulfate) was a more efficient catalyst in the microemulsion system than the crown ether ([18]crown-6).  相似文献   
6.
7.
The adsorption of two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl phosphate (SDP), at surfaces of aluminum and aluminum oxide has been studied by means of atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance with dissipation monitoring (QCM-D). It was shown that more SDP than SDS binds to the surface and that SDP prevents dissolution of aluminum in water whereas SDS does not. This was not obvious, since the adsorption isotherms of the two surfactants to aluminum pigment powder are quite similar, as shown in an earlier work. The decreased aluminum dissolution with SDP compared to SDS was explained by the formation of a more compact protective layer with less permeability on the aluminum surface with SDP than with SDS. This is explained by differences in complexing ability between the surfactants and the aluminum pigment surface. While SDP is expected to form an inner-sphere complex with aluminum, leading to a lower accessibility of aluminum sites to water, SDS is likely to form a weaker outer-sphere complex.  相似文献   
8.
Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials.  相似文献   
9.
Summary The density, electrical conductivity, viscosity, lightscattering and the low-angle X-ray diffraction have been examined in the solution region of the ternary systems of sodium cholate or desoxycholate and n-decanol and water at 20°. The phase diagrams show a continuous transition from homogeneous solutions of bile-acid salt in water to homogeneous solutions of bile-acid salt and water in decanol. Along the bile-acid salt-water axis there are micellar solutions containing micelles of the normal type where the polar groups are directed outwards, and these micelles can solubilize decanol without initially undergoing any change in their basic structure. Above a critical value, however, the micellar structure is determined by the decanol molecules, and at large decanol contents there is an inversion that results in the formation of reversed micelles, with the polar groups and water now located within the core of the micelles.
Zusammenfassung Dichte, elektrische Leitfähigkeit, Viskosität, Lichtstreuung und Kleinwinkelstreuung von Röntgenstrahlen wurden im Lösungsgebiet der ternären Systeme Natriumcholat bzw. Natriumdesoxycholat, n-Dekanol und Wasser studiert. Das Phasendiagramm zeigt einen kontinuierlichen Übergang von der homogenen Gallensalzlösung in Wasser bis zur homogenen Lösung von Gallensalz und Wasser in Dekanol. Entlang der Gallensalz-Wasserachse kommen mizellare Lösungen vor, die Mizellen vom normalen Typ enthalten, bei denen die polaren Gruppen nach außen gerichtet sind. Diese Mizellen können recht große Mengen Dekanol solubilisieren, ohne daß ihre Grundstruktur verändert wird. Oberhalb einer kritischen Menge bestimmen jedoch die Dekanolmoleküle die Mizellstruktur. Bei großen Mengen Dekanol erfolgt eine Umstrukturierung, die zur Bildung von Mizellen mit den polaren Gruppen im Mizellkern führt.
  相似文献   
10.
Production of high performance conductive textile yarn fibers for different electronic applications has become a prominent area of many research groups throughout the world. We have used oxidative chemical vapor deposition (OCVD) technique to coat flexible and high strength polyester yarns with conjugated polymer, poly(3,4‐ethylenedioxythiophene) (PEDOT) in presence of ferric (III) chloride (FeCl3) oxidant. OCVD is an efficient solvent free technique used to get uniform, thin, and highly conductive polymer layers on different substrates. In this paper, PEDOT‐coated polyester (PET) yarns were prepared under specific reaction conditions, and the electrical, mechanical and thermal properties were compared to previously studied PEDOT‐coated viscose yarns. Scanning electron microscopy (SEM) and FT‐IR analysis revealed that polymerization of PEDOT on the surface of the polyester yarns has been taken place successfully and structural analysis showed that PEDOT has strong interactions with viscose yarns as compared to PET yarns. The voltage–current (VI) characteristics showed that PET yarns are more conductive than PEDOT‐coated viscose yarns. The variation in the conductivity of PEDOT‐coated yarns and the heat generation properties during the flow of current through coated yarns for longer period of time, was studied by time–current (tI) characteristics. Thermogravimeteric analysis (TGA) was employed to investigate the thermal properties and the amount of PEDOT in PEDOT‐coated PET yarns compared to PEDOT‐coated viscose. The effect of PEDOT coating and ferric (III) chloride concentration on the mechanical properties of coated yarns was evaluated by tensile testing. The obtained PEDOT‐coated conductive polyester yarns could be used in smart clothing for medical and military applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号