首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2004年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Cavitation nucleation agents for nonthermal ultrasound therapy   总被引:4,自引:0,他引:4  
The use of a nucleation-promoting agent can greatly enhance therapeutically useful nonthermal bioeffects. A blank agent (saline), Optison ultrasound contrast agent, a stabilized perfluoropentane droplet suspension (SDS), and retained air space were compared as nucleation agents in whole blood. Fresh canine whole blood with added agent was exposed in 1.3-ml disposable pipette bulbs to lithotripter shock waves (2-Hz rate; +24.4, -5.2 MPa peak pressure amplitudes). Cavitation activity was assessed by measuring hemolysis. The droplet suspension performed nearly as well as retained air when added at a concentration sufficient to provide a roughly equal volume of gas after vaporization. Optison also yielded nucleation, but a concentration of 10%-20% was needed for large enhancement of hemolysis comparable to 5% SDS. Exposure at room temperature, which was less than the 29 degrees C boiling point of perfluoropentane, eliminated the enhancement of the hemolysis effect relative to the blank. Application of 100-kPa excess pressure during exposure reduced but did not eliminate the nucleation ability of Optison, SDS, or retained air. However, this small pressure (relative to the peak positive pressure of the shock waves) eliminated the hemolysis induced with the blank agent. The stabilized perfluoropentane droplet suspension appears to be a good nucleation agent for nonthermal ultrasound therapy applications.  相似文献   
2.
This paper examines the vaporization of individual dodecafluoropentane droplets by the application of single ultrasonic tone bursts. High speed video microscopy was used to monitor droplets in a flow tube, while a focused, single element transducer operating at 3, 4, or 10 MHz was aimed at the intersection of the acoustical and optical beams. A highly dilute droplet emulsion was injected, and individual droplets were positioned in the two foci. Phase transitions of droplets were produced by rarefactional pressures as low as 4 MPa at 3 MHz using single, 3.25 micros tone bursts. During acoustic irradiation, droplets showed dipole-type oscillations along the acoustic axis (average amplitude 1.3 microm, independent of droplet diameter which ranged from 5 to 27 microm). The onset of vaporization was monitored as either spot-like, within the droplet, or homogeneous, throughout the droplet's imaged cross section. Spot-like centers of nucleation were observed solely along the axis lying parallel to the direction of oscillation and centered on the droplet. Smaller droplets required more acoustic intensity for vaporization than larger droplets, which is consistent with other experiments on emulsions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号