首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
数学   2篇
物理学   7篇
  2011年   1篇
  2008年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
The functional Ito formula, in the form df() = f( + d ) –f(),is formulated and proved in the context of a Lie algebra L associatedwith a quantum (non-commutative) stochastic calculus. Here fis an element of the universal enveloping algebra U of L, andf() + d() – f() is given a meaning using the coproductstructure of U even though the individual terms of this expressionhave no meaning. The Ito formula is equivalent to a chaoticexpansion formula for f() which is found explicitly. 1991 MathematicsSubject Classification: primary 81S25; secondary 60H05; tertiary18B25.  相似文献   
4.
5.
6.
The resources required to characterize the dynamics of engineered quantum systems--such as quantum computers and quantum sensors--grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.  相似文献   
7.
We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery.  相似文献   
8.
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号